Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbbid Structured version   Unicode version

Theorem sbbid 2105
 Description: Deduction substituting both sides of a biconditional. (Contributed by NM, 30-Jun-1993.)
Hypotheses
Ref Expression
sbbid.1
sbbid.2
Assertion
Ref Expression
sbbid

Proof of Theorem sbbid
StepHypRef Expression
1 sbbid.1 . . 3
2 sbbid.2 . . 3
31, 2alrimi 1816 . 2
4 spsbbi 2104 . 2
53, 4syl 16 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184  wal 1368  wnf 1590  wsb 1702 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-12 1794  ax-13 1955 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-ex 1588  df-nf 1591  df-sb 1703 This theorem is referenced by:  sbcom3  2115  sbco3  2124  sbcom2  2160  sbcom2OLD  2161  sbal  2183  wl-equsb3  28548  wl-sbcom2d-lem1  28553  wl-sbcom3  28579
 Copyright terms: Public domain W3C validator