Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbalv Structured version   Unicode version

Theorem sbalv 2270
 Description: Quantify with new variable inside substitution. (Contributed by NM, 18-Aug-1993.)
Hypothesis
Ref Expression
sbalv.1
Assertion
Ref Expression
sbalv
Distinct variable groups:   ,   ,
Allowed substitution hints:   (,,)   (,,)

Proof of Theorem sbalv
StepHypRef Expression
1 sbal 2268 . 2
2 sbalv.1 . . 3
32albii 1685 . 2
41, 3bitri 252 1
 Colors of variables: wff setvar class Syntax hints:   wb 187  wal 1435  wsb 1790 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063 This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-ex 1658  df-nf 1662  df-sb 1791 This theorem is referenced by:  sbmo  2321  sbabel  2597  sbabelOLD  2598  mo5f  28062
 Copyright terms: Public domain W3C validator