MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbalv Structured version   Unicode version

Theorem sbalv 2270
Description: Quantify with new variable inside substitution. (Contributed by NM, 18-Aug-1993.)
Hypothesis
Ref Expression
sbalv.1  |-  ( [ y  /  x ] ph 
<->  ps )
Assertion
Ref Expression
sbalv  |-  ( [ y  /  x ] A. z ph  <->  A. z ps )
Distinct variable groups:    x, z    y, z
Allowed substitution hints:    ph( x, y, z)    ps( x, y, z)

Proof of Theorem sbalv
StepHypRef Expression
1 sbal 2268 . 2  |-  ( [ y  /  x ] A. z ph  <->  A. z [ y  /  x ] ph )
2 sbalv.1 . . 3  |-  ( [ y  /  x ] ph 
<->  ps )
32albii 1685 . 2  |-  ( A. z [ y  /  x ] ph  <->  A. z ps )
41, 3bitri 252 1  |-  ( [ y  /  x ] A. z ph  <->  A. z ps )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 187   A.wal 1435   [wsb 1790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-ex 1658  df-nf 1662  df-sb 1791
This theorem is referenced by:  sbmo  2321  sbabel  2597  sbabelOLD  2598  mo5f  28062
  Copyright terms: Public domain W3C validator