MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbalOLD Structured version   Unicode version

Theorem sbalOLD 2197
Description: Obsolete proof of sbal 2196 as of 29-Sep-2018. (Contributed by NM, 5-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbalOLD  |-  ( [ z  /  y ] A. x ph  <->  A. x [ z  /  y ] ph )
Distinct variable groups:    x, y    x, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem sbalOLD
StepHypRef Expression
1 ax16gb 1889 . . . . 5  |-  ( A. x  x  =  z  ->  ( ph  <->  A. x ph ) )
21sbimi 1717 . . . 4  |-  ( [ z  /  y ] A. x  x  =  z  ->  [ z  /  y ] (
ph 
<-> 
A. x ph )
)
3 sbequ5 2101 . . . 4  |-  ( [ z  /  y ] A. x  x  =  z  <->  A. x  x  =  z )
4 sbbi 2116 . . . 4  |-  ( [ z  /  y ] ( ph  <->  A. x ph )  <->  ( [ z  /  y ] ph  <->  [ z  /  y ] A. x ph )
)
52, 3, 43imtr3i 265 . . 3  |-  ( A. x  x  =  z  ->  ( [ z  / 
y ] ph  <->  [ z  /  y ] A. x ph ) )
6 ax16gb 1889 . . 3  |-  ( A. x  x  =  z  ->  ( [ z  / 
y ] ph  <->  A. x [ z  /  y ] ph ) )
75, 6bitr3d 255 . 2  |-  ( A. x  x  =  z  ->  ( [ z  / 
y ] A. x ph 
<-> 
A. x [ z  /  y ] ph ) )
8 sbal1 2193 . 2  |-  ( -. 
A. x  x  =  z  ->  ( [
z  /  y ] A. x ph  <->  A. x [ z  /  y ] ph ) )
97, 8pm2.61i 164 1  |-  ( [ z  /  y ] A. x ph  <->  A. x [ z  /  y ] ph )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184   A.wal 1377   [wsb 1711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-ex 1597  df-nf 1600  df-sb 1712
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator