Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbalOLD Structured version   Unicode version

Theorem sbalOLD 2197
 Description: Obsolete proof of sbal 2196 as of 29-Sep-2018. (Contributed by NM, 5-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbalOLD
Distinct variable groups:   ,   ,
Allowed substitution hints:   (,,)

Proof of Theorem sbalOLD
StepHypRef Expression
1 ax16gb 1889 . . . . 5
21sbimi 1717 . . . 4
3 sbequ5 2101 . . . 4
4 sbbi 2116 . . . 4
52, 3, 43imtr3i 265 . . 3
6 ax16gb 1889 . . 3
75, 6bitr3d 255 . 2
8 sbal1 2193 . 2
97, 8pm2.61i 164 1
 Colors of variables: wff setvar class Syntax hints:   wb 184  wal 1377  wsb 1711 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-ex 1597  df-nf 1600  df-sb 1712 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator