Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbal1OLD Structured version   Unicode version

Theorem sbal1OLD 2194
 Description: Obsolete proof of sbal1 2193 as of 29-Sep-2018. (Contributed by NM, 5-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbal1OLD
Distinct variable group:   ,
Allowed substitution hints:   (,,)

Proof of Theorem sbal1OLD
StepHypRef Expression
1 sbequ12 1961 . . . . 5
21sps 1814 . . . 4
3 sbequ12 1961 . . . . . 6
43sps 1814 . . . . 5
54dral2 2039 . . . 4
62, 5bitr3d 255 . . 3
76a1d 25 . 2
8 nfa1 1845 . . . . . . . 8
98nfsb4 2104 . . . . . . 7
109nfrd 1823 . . . . . 6
11 sp 1808 . . . . . . . 8
1211sbimi 1717 . . . . . . 7
1312alimi 1614 . . . . . 6
1410, 13syl6 33 . . . . 5
1514adantl 466 . . . 4
16 sb4 2070 . . . . . . . 8
1716al2imi 1616 . . . . . . 7
1817hbnaes 2032 . . . . . 6
19 ax-11 1791 . . . . . 6
2018, 19syl6 33 . . . . 5
21 dveeq2 2015 . . . . . . . . 9
22 alim 1613 . . . . . . . . 9
2321, 22syl9 71 . . . . . . . 8
2423al2imi 1616 . . . . . . 7
25 sb2 2066 . . . . . . 7
2624, 25syl6 33 . . . . . 6
2726hbnaes 2032 . . . . 5
2820, 27sylan9 657 . . . 4
2915, 28impbid 191 . . 3
3029ex 434 . 2
317, 30pm2.61i 164 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wb 184   wa 369  wal 1377  wsb 1711 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968 This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1597  df-nf 1600  df-sb 1712 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator