MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbal Structured version   Visualization version   Unicode version

Theorem sbal 2311
Description: Move universal quantifier in and out of substitution. (Contributed by NM, 16-May-1993.) (Proof shortened by Wolf Lammen, 29-Sep-2018.)
Assertion
Ref Expression
sbal  |-  ( [ z  /  y ] A. x ph  <->  A. x [ z  /  y ] ph )
Distinct variable groups:    x, y    x, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem sbal
StepHypRef Expression
1 nfae 2165 . . . 4  |-  F/ y A. x  x  =  z
2 axc16gb 2044 . . . 4  |-  ( A. x  x  =  z  ->  ( ph  <->  A. x ph ) )
31, 2sbbid 2252 . . 3  |-  ( A. x  x  =  z  ->  ( [ z  / 
y ] ph  <->  [ z  /  y ] A. x ph ) )
4 axc16gb 2044 . . 3  |-  ( A. x  x  =  z  ->  ( [ z  / 
y ] ph  <->  A. x [ z  /  y ] ph ) )
53, 4bitr3d 263 . 2  |-  ( A. x  x  =  z  ->  ( [ z  / 
y ] A. x ph 
<-> 
A. x [ z  /  y ] ph ) )
6 sbal1 2309 . 2  |-  ( -. 
A. x  x  =  z  ->  ( [
z  /  y ] A. x ph  <->  A. x [ z  /  y ] ph ) )
75, 6pm2.61i 169 1  |-  ( [ z  /  y ] A. x ph  <->  A. x [ z  /  y ] ph )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 189   A.wal 1450   [wsb 1805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-ex 1672  df-nf 1676  df-sb 1806
This theorem is referenced by:  sbex  2312  sbalv  2313  sbcal  3305  ax11-pm2  31504  bj-sbnf  31509  sbcalgOLD  36973
  Copyright terms: Public domain W3C validator