MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbab Structured version   Unicode version

Theorem sbab 2604
Description: The right-hand side of the second equality is a way of representing proper substitution of  y for  x into a class variable. (Contributed by NM, 14-Sep-2003.)
Assertion
Ref Expression
sbab  |-  ( x  =  y  ->  A  =  { z  |  [
y  /  x ]
z  e.  A }
)
Distinct variable groups:    z, A    x, z    y, z
Allowed substitution hints:    A( x, y)

Proof of Theorem sbab
StepHypRef Expression
1 sbequ12 1993 . 2  |-  ( x  =  y  ->  (
z  e.  A  <->  [ y  /  x ] z  e.  A ) )
21abbi2dv 2594 1  |-  ( x  =  y  ->  A  =  { z  |  [
y  /  x ]
z  e.  A }
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1395   [wsb 1740    e. wcel 1819   {cab 2442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-clab 2443  df-cleq 2449  df-clel 2452
This theorem is referenced by:  sbcel12  3832  sbcel12gOLD  3833  sbceqg  3834
  Copyright terms: Public domain W3C validator