Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbab Structured version   Visualization version   Unicode version

Theorem sbab 2578
 Description: The right-hand side of the second equality is a way of representing proper substitution of for into a class variable. (Contributed by NM, 14-Sep-2003.)
Assertion
Ref Expression
sbab
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   (,)

Proof of Theorem sbab
StepHypRef Expression
1 sbequ12 2083 . 2
21abbi2dv 2570 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wceq 1444  wsb 1797   wcel 1887  cab 2437 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431 This theorem depends on definitions:  df-bi 189  df-an 373  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-clab 2438  df-cleq 2444  df-clel 2447 This theorem is referenced by:  sbcel12  3772  sbceqg  3773  sbcel12gOLD  36905
 Copyright terms: Public domain W3C validator