MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb8mo Structured version   Unicode version

Theorem sb8mo 2304
Description: Variable substitution for "at most one." (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Hypothesis
Ref Expression
sb8eu.1  |-  F/ y
ph
Assertion
Ref Expression
sb8mo  |-  ( E* x ph  <->  E* y [ y  /  x ] ph )

Proof of Theorem sb8mo
StepHypRef Expression
1 sb8eu.1 . . . 4  |-  F/ y
ph
21sb8e 2135 . . 3  |-  ( E. x ph  <->  E. y [ y  /  x ] ph )
31sb8eu 2301 . . 3  |-  ( E! x ph  <->  E! y [ y  /  x ] ph )
42, 3imbi12i 326 . 2  |-  ( ( E. x ph  ->  E! x ph )  <->  ( E. y [ y  /  x ] ph  ->  E! y [ y  /  x ] ph ) )
5 df-mo 2267 . 2  |-  ( E* x ph  <->  ( E. x ph  ->  E! x ph ) )
6 df-mo 2267 . 2  |-  ( E* y [ y  /  x ] ph  <->  ( E. y [ y  /  x ] ph  ->  E! y [ y  /  x ] ph ) )
74, 5, 63bitr4i 277 1  |-  ( E* x ph  <->  E* y [ y  /  x ] ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184   E.wex 1587   F/wnf 1590   [wsb 1702   E!weu 2262   E*wmo 2263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator