MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb5 Unicode version

Theorem sb5 2149
Description: Equivalence for substitution. Similar to Theorem 6.1 of [Quine] p. 40. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
sb5  |-  ( [ y  /  x ] ph 
<->  E. x ( x  =  y  /\  ph ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem sb5
StepHypRef Expression
1 sb6 2148 . 2  |-  ( [ y  /  x ] ph 
<-> 
A. x ( x  =  y  ->  ph )
)
2 sb56 2147 . 2  |-  ( E. x ( x  =  y  /\  ph )  <->  A. x ( x  =  y  ->  ph ) )
31, 2bitr4i 244 1  |-  ( [ y  /  x ] ph 
<->  E. x ( x  =  y  /\  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1546   E.wex 1547   [wsb 1655
This theorem is referenced by:  2sb5  2161  sb7f  2169  sbelx  2174  sbc2or  3129  sbc5  3145
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946
This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656
  Copyright terms: Public domain W3C validator