![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sb4b | Structured version Visualization version Unicode version |
Description: Simplified definition of substitution when variables are distinct. (Contributed by NM, 27-May-1997.) |
Ref | Expression |
---|---|
sb4b |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb4 2205 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sb2 2201 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | impbid1 208 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1677 ax-4 1690 ax-5 1766 ax-6 1813 ax-7 1859 ax-10 1932 ax-12 1950 ax-13 2104 |
This theorem depends on definitions: df-bi 190 df-an 378 df-ex 1672 df-nf 1676 df-sb 1806 |
This theorem is referenced by: sbcom3 2260 sbal1 2309 sbal2 2310 wl-sb6nae 31956 wl-sbalnae 31962 wl-sbcom3 31989 |
Copyright terms: Public domain | W3C validator |