Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb10f Structured version   Unicode version

Theorem sb10f 2224
 Description: Hao Wang's identity axiom P6 in Irving Copi, Symbolic Logic (5th ed., 1979), p. 328. In traditional predicate calculus, this is a sole axiom for identity from which the usual ones can be derived. (Contributed by NM, 9-May-2005.) (Revised by Mario Carneiro, 6-Oct-2016.)
Hypothesis
Ref Expression
sb10f.1
Assertion
Ref Expression
sb10f
Distinct variable group:   ,
Allowed substitution hints:   (,,)

Proof of Theorem sb10f
StepHypRef Expression
1 sb10f.1 . . . 4
21nfsb 2208 . . 3
3 sbequ 2141 . . 3
42, 3equsex 2064 . 2
54bicomi 202 1
 Colors of variables: wff setvar class Syntax hints:   wb 184   wa 367  wex 1633  wnf 1637  wsb 1763 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026 This theorem depends on definitions:  df-bi 185  df-an 369  df-ex 1634  df-nf 1638  df-sb 1764 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator