MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadfval Structured version   Unicode version

Theorem sadfval 14400
Description: Define the addition of two bit sequences, using df-had 1492 and df-cad 1505 bit operations. (Contributed by Mario Carneiro, 5-Sep-2016.)
Hypotheses
Ref Expression
sadval.a  |-  ( ph  ->  A  C_  NN0 )
sadval.b  |-  ( ph  ->  B  C_  NN0 )
sadval.c  |-  C  =  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
Assertion
Ref Expression
sadfval  |-  ( ph  ->  ( A sadd  B )  =  { k  e. 
NN0  | hadd ( k  e.  A ,  k  e.  B ,  (/)  e.  ( C `  k ) ) } )
Distinct variable groups:    k, c, m, n    A, c, k, m    B, c, k, m    C, k    ph, k
Allowed substitution hints:    ph( m, n, c)    A( n)    B( n)    C( m, n, c)

Proof of Theorem sadfval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sadval.a . . 3  |-  ( ph  ->  A  C_  NN0 )
2 nn0ex 10875 . . . 4  |-  NN0  e.  _V
32elpw2 4589 . . 3  |-  ( A  e.  ~P NN0  <->  A  C_  NN0 )
41, 3sylibr 215 . 2  |-  ( ph  ->  A  e.  ~P NN0 )
5 sadval.b . . 3  |-  ( ph  ->  B  C_  NN0 )
62elpw2 4589 . . 3  |-  ( B  e.  ~P NN0  <->  B  C_  NN0 )
75, 6sylibr 215 . 2  |-  ( ph  ->  B  e.  ~P NN0 )
8 simpl 458 . . . . . 6  |-  ( ( x  =  A  /\  y  =  B )  ->  x  =  A )
98eleq2d 2499 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  ( k  e.  x  <->  k  e.  A ) )
10 simpr 462 . . . . . 6  |-  ( ( x  =  A  /\  y  =  B )  ->  y  =  B )
1110eleq2d 2499 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  ( k  e.  y  <-> 
k  e.  B ) )
12 simp1l 1029 . . . . . . . . . . . . 13  |-  ( ( ( x  =  A  /\  y  =  B )  /\  c  e.  2o  /\  m  e. 
NN0 )  ->  x  =  A )
1312eleq2d 2499 . . . . . . . . . . . 12  |-  ( ( ( x  =  A  /\  y  =  B )  /\  c  e.  2o  /\  m  e. 
NN0 )  ->  (
m  e.  x  <->  m  e.  A ) )
14 simp1r 1030 . . . . . . . . . . . . 13  |-  ( ( ( x  =  A  /\  y  =  B )  /\  c  e.  2o  /\  m  e. 
NN0 )  ->  y  =  B )
1514eleq2d 2499 . . . . . . . . . . . 12  |-  ( ( ( x  =  A  /\  y  =  B )  /\  c  e.  2o  /\  m  e. 
NN0 )  ->  (
m  e.  y  <->  m  e.  B ) )
16 biidd 240 . . . . . . . . . . . 12  |-  ( ( ( x  =  A  /\  y  =  B )  /\  c  e.  2o  /\  m  e. 
NN0 )  ->  ( (/) 
e.  c  <->  (/)  e.  c ) )
1713, 15, 16cadbi123d 1508 . . . . . . . . . . 11  |-  ( ( ( x  =  A  /\  y  =  B )  /\  c  e.  2o  /\  m  e. 
NN0 )  ->  (cadd ( m  e.  x ,  m  e.  y ,  (/)  e.  c )  <-> cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ) )
1817ifbid 3937 . . . . . . . . . 10  |-  ( ( ( x  =  A  /\  y  =  B )  /\  c  e.  2o  /\  m  e. 
NN0 )  ->  if (cadd ( m  e.  x ,  m  e.  y ,  (/)  e.  c ) ,  1o ,  (/) )  =  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) )
1918mpt2eq3dva 6369 . . . . . . . . 9  |-  ( ( x  =  A  /\  y  =  B )  ->  ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  x ,  m  e.  y ,  (/)  e.  c ) ,  1o ,  (/) ) )  =  ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) )
2019seqeq2d 12217 . . . . . . . 8  |-  ( ( x  =  A  /\  y  =  B )  ->  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  x ,  m  e.  y ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )  =  seq 0
( ( c  e.  2o ,  m  e. 
NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/) 
e.  c ) ,  1o ,  (/) ) ) ,  ( n  e. 
NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) )
21 sadval.c . . . . . . . 8  |-  C  =  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
2220, 21syl6eqr 2488 . . . . . . 7  |-  ( ( x  =  A  /\  y  =  B )  ->  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  x ,  m  e.  y ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )  =  C )
2322fveq1d 5883 . . . . . 6  |-  ( ( x  =  A  /\  y  =  B )  ->  (  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  x ,  m  e.  y ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) ) `  k )  =  ( C `  k ) )
2423eleq2d 2499 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  ( (/)  e.  (  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  x ,  m  e.  y ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e. 
NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `
 k )  <->  (/)  e.  ( C `  k ) ) )
259, 11, 24hadbi123d 1493 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  (hadd ( k  e.  x ,  k  e.  y ,  (/)  e.  (  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  x ,  m  e.  y ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) ) `  k ) )  <-> hadd ( k  e.  A ,  k  e.  B ,  (/)  e.  ( C `
 k ) ) ) )
2625rabbidv 3079 . . 3  |-  ( ( x  =  A  /\  y  =  B )  ->  { k  e.  NN0  | hadd ( k  e.  x ,  k  e.  y ,  (/)  e.  (  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  x ,  m  e.  y ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e. 
NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `
 k ) ) }  =  { k  e.  NN0  | hadd (
k  e.  A , 
k  e.  B ,  (/) 
e.  ( C `  k ) ) } )
27 df-sad 14399 . . 3  |- sadd  =  ( x  e.  ~P NN0 ,  y  e.  ~P NN0  |->  { k  e.  NN0  | hadd ( k  e.  x ,  k  e.  y ,  (/)  e.  (  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  x ,  m  e.  y ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e. 
NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `
 k ) ) } )
282rabex 4576 . . 3  |-  { k  e.  NN0  | hadd (
k  e.  A , 
k  e.  B ,  (/) 
e.  ( C `  k ) ) }  e.  _V
2926, 27, 28ovmpt2a 6441 . 2  |-  ( ( A  e.  ~P NN0  /\  B  e.  ~P NN0 )  ->  ( A sadd  B
)  =  { k  e.  NN0  | hadd (
k  e.  A , 
k  e.  B ,  (/) 
e.  ( C `  k ) ) } )
304, 7, 29syl2anc 665 1  |-  ( ph  ->  ( A sadd  B )  =  { k  e. 
NN0  | hadd ( k  e.  A ,  k  e.  B ,  (/)  e.  ( C `  k ) ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437  haddwhad 1491  caddwcad 1504    e. wcel 1870   {crab 2786    C_ wss 3442   (/)c0 3767   ifcif 3915   ~Pcpw 3985    |-> cmpt 4484   ` cfv 5601  (class class class)co 6305    |-> cmpt2 6307   1oc1o 7183   2oc2o 7184   0cc0 9538   1c1 9539    - cmin 9859   NN0cn0 10869    seqcseq 12210   sadd csad 14368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-i2m1 9606  ax-1ne0 9607  ax-rrecex 9610  ax-cnre 9611
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-xor 1401  df-tru 1440  df-had 1492  df-cad 1505  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-reu 2789  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-nn 10610  df-n0 10870  df-seq 12211  df-sad 14399
This theorem is referenced by:  sadval  14404  sadadd2lem  14407  sadadd3  14409  sadcl  14410  sadcom  14411
  Copyright terms: Public domain W3C validator