MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadc0 Structured version   Unicode version

Theorem sadc0 13749
Description: The initial element of the carry sequence is F.. (Contributed by Mario Carneiro, 5-Sep-2016.)
Hypotheses
Ref Expression
sadval.a  |-  ( ph  ->  A  C_  NN0 )
sadval.b  |-  ( ph  ->  B  C_  NN0 )
sadval.c  |-  C  =  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
Assertion
Ref Expression
sadc0  |-  ( ph  ->  -.  (/)  e.  ( C `
 0 ) )
Distinct variable groups:    m, c, n    A, c, m    B, c, m
Allowed substitution hints:    ph( m, n, c)    A( n)    B( n)    C( m, n, c)

Proof of Theorem sadc0
StepHypRef Expression
1 noel 3736 . . 3  |-  -.  (/)  e.  (/)
2 sadval.c . . . . . 6  |-  C  =  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
32fveq1i 5787 . . . . 5  |-  ( C `
 0 )  =  (  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) ) `  0 )
4 0z 10755 . . . . . 6  |-  0  e.  ZZ
5 seq1 11917 . . . . . 6  |-  ( 0  e.  ZZ  ->  (  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/) 
e.  c ) ,  1o ,  (/) ) ) ,  ( n  e. 
NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `
 0 )  =  ( ( n  e. 
NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ` 
0 ) )
64, 5ax-mp 5 . . . . 5  |-  (  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/) 
e.  c ) ,  1o ,  (/) ) ) ,  ( n  e. 
NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `
 0 )  =  ( ( n  e. 
NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ` 
0 )
7 0nn0 10692 . . . . . 6  |-  0  e.  NN0
8 iftrue 3892 . . . . . . 7  |-  ( n  =  0  ->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) )  =  (/) )
9 eqid 2451 . . . . . . 7  |-  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) )  =  ( n  e. 
NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) )
10 0ex 4517 . . . . . . 7  |-  (/)  e.  _V
118, 9, 10fvmpt 5870 . . . . . 6  |-  ( 0  e.  NN0  ->  ( ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) `
 0 )  =  (/) )
127, 11ax-mp 5 . . . . 5  |-  ( ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) `
 0 )  =  (/)
133, 6, 123eqtri 2483 . . . 4  |-  ( C `
 0 )  =  (/)
1413eleq2i 2527 . . 3  |-  ( (/)  e.  ( C `  0
)  <->  (/)  e.  (/) )
151, 14mtbir 299 . 2  |-  -.  (/)  e.  ( C `  0 )
1615a1i 11 1  |-  ( ph  ->  -.  (/)  e.  ( C `
 0 ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1370  caddwcad 1421    e. wcel 1758    C_ wss 3423   (/)c0 3732   ifcif 3886    |-> cmpt 4445   ` cfv 5513  (class class class)co 6187    |-> cmpt2 6189   1oc1o 7010   2oc2o 7011   0cc0 9380   1c1 9381    - cmin 9693   NN0cn0 10677   ZZcz 10744    seqcseq 11904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4508  ax-nul 4516  ax-pow 4565  ax-pr 4626  ax-un 6469  ax-cnex 9436  ax-resscn 9437  ax-1cn 9438  ax-icn 9439  ax-addcl 9440  ax-addrcl 9441  ax-mulcl 9442  ax-mulrcl 9443  ax-mulcom 9444  ax-addass 9445  ax-mulass 9446  ax-distr 9447  ax-i2m1 9448  ax-1ne0 9449  ax-1rid 9450  ax-rnegex 9451  ax-rrecex 9452  ax-cnre 9453  ax-pre-lttri 9454  ax-pre-lttrn 9455  ax-pre-ltadd 9456  ax-pre-mulgt0 9457
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2599  df-ne 2644  df-nel 2645  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3067  df-sbc 3282  df-csb 3384  df-dif 3426  df-un 3428  df-in 3430  df-ss 3437  df-pss 3439  df-nul 3733  df-if 3887  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4187  df-iun 4268  df-br 4388  df-opab 4446  df-mpt 4447  df-tr 4481  df-eprel 4727  df-id 4731  df-po 4736  df-so 4737  df-fr 4774  df-we 4776  df-ord 4817  df-on 4818  df-lim 4819  df-suc 4820  df-xp 4941  df-rel 4942  df-cnv 4943  df-co 4944  df-dm 4945  df-rn 4946  df-res 4947  df-ima 4948  df-iota 5476  df-fun 5515  df-fn 5516  df-f 5517  df-f1 5518  df-fo 5519  df-f1o 5520  df-fv 5521  df-riota 6148  df-ov 6190  df-oprab 6191  df-mpt2 6192  df-om 6574  df-2nd 6675  df-recs 6929  df-rdg 6963  df-er 7198  df-en 7408  df-dom 7409  df-sdom 7410  df-pnf 9518  df-mnf 9519  df-xr 9520  df-ltxr 9521  df-le 9522  df-sub 9695  df-neg 9696  df-nn 10421  df-n0 10678  df-z 10745  df-uz 10960  df-seq 11905
This theorem is referenced by:  sadcadd  13753  sadadd2  13755  saddisjlem  13759
  Copyright terms: Public domain W3C validator