MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadadd3 Structured version   Unicode version

Theorem sadadd3 13678
Description: Sum of initial segments of the sadd sequence. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
sadval.a  |-  ( ph  ->  A  C_  NN0 )
sadval.b  |-  ( ph  ->  B  C_  NN0 )
sadval.c  |-  C  =  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
sadcp1.n  |-  ( ph  ->  N  e.  NN0 )
sadcadd.k  |-  K  =  `' (bits  |`  NN0 )
Assertion
Ref Expression
sadadd3  |-  ( ph  ->  ( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  mod  ( 2 ^ N ) )  =  ( ( ( K `
 ( A  i^i  ( 0..^ N ) ) )  +  ( K `
 ( B  i^i  ( 0..^ N ) ) ) )  mod  (
2 ^ N ) ) )
Distinct variable groups:    m, c, n    A, c, m    B, c, m    n, N
Allowed substitution hints:    ph( m, n, c)    A( n)    B( n)    C( m, n, c)    K( m, n, c)    N( m, c)

Proof of Theorem sadadd3
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 2nn 10500 . . . . . . . . 9  |-  2  e.  NN
21a1i 11 . . . . . . . 8  |-  ( ph  ->  2  e.  NN )
3 sadcp1.n . . . . . . . 8  |-  ( ph  ->  N  e.  NN0 )
42, 3nnexpcld 12050 . . . . . . 7  |-  ( ph  ->  ( 2 ^ N
)  e.  NN )
54nnzd 10767 . . . . . 6  |-  ( ph  ->  ( 2 ^ N
)  e.  ZZ )
6 iddvds 13567 . . . . . 6  |-  ( ( 2 ^ N )  e.  ZZ  ->  (
2 ^ N ) 
||  ( 2 ^ N ) )
75, 6syl 16 . . . . 5  |-  ( ph  ->  ( 2 ^ N
)  ||  ( 2 ^ N ) )
8 dvds0 13569 . . . . . 6  |-  ( ( 2 ^ N )  e.  ZZ  ->  (
2 ^ N ) 
||  0 )
95, 8syl 16 . . . . 5  |-  ( ph  ->  ( 2 ^ N
)  ||  0 )
10 breq2 4317 . . . . . 6  |-  ( ( 2 ^ N )  =  if ( (/)  e.  ( C `  N
) ,  ( 2 ^ N ) ,  0 )  ->  (
( 2 ^ N
)  ||  ( 2 ^ N )  <->  ( 2 ^ N )  ||  if ( (/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 ) ) )
11 breq2 4317 . . . . . 6  |-  ( 0  =  if ( (/)  e.  ( C `  N
) ,  ( 2 ^ N ) ,  0 )  ->  (
( 2 ^ N
)  ||  0  <->  ( 2 ^ N )  ||  if ( (/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 ) ) )
1210, 11ifboth 3846 . . . . 5  |-  ( ( ( 2 ^ N
)  ||  ( 2 ^ N )  /\  ( 2 ^ N
)  ||  0 )  ->  ( 2 ^ N )  ||  if ( (/)  e.  ( C `
 N ) ,  ( 2 ^ N
) ,  0 ) )
137, 9, 12syl2anc 661 . . . 4  |-  ( ph  ->  ( 2 ^ N
)  ||  if ( (/) 
e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 ) )
14 inss1 3591 . . . . . . . . 9  |-  ( ( A sadd  B )  i^i  ( 0..^ N ) )  C_  ( A sadd  B )
15 sadval.a . . . . . . . . . . 11  |-  ( ph  ->  A  C_  NN0 )
16 sadval.b . . . . . . . . . . 11  |-  ( ph  ->  B  C_  NN0 )
17 sadval.c . . . . . . . . . . 11  |-  C  =  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
1815, 16, 17sadfval 13669 . . . . . . . . . 10  |-  ( ph  ->  ( A sadd  B )  =  { k  e. 
NN0  | hadd ( k  e.  A ,  k  e.  B ,  (/)  e.  ( C `  k ) ) } )
19 ssrab2 3458 . . . . . . . . . 10  |-  { k  e.  NN0  | hadd (
k  e.  A , 
k  e.  B ,  (/) 
e.  ( C `  k ) ) } 
C_  NN0
2018, 19syl6eqss 3427 . . . . . . . . 9  |-  ( ph  ->  ( A sadd  B ) 
C_  NN0 )
2114, 20syl5ss 3388 . . . . . . . 8  |-  ( ph  ->  ( ( A sadd  B
)  i^i  ( 0..^ N ) )  C_  NN0 )
22 fzofi 11817 . . . . . . . . . 10  |-  ( 0..^ N )  e.  Fin
2322a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( 0..^ N )  e.  Fin )
24 inss2 3592 . . . . . . . . 9  |-  ( ( A sadd  B )  i^i  ( 0..^ N ) )  C_  ( 0..^ N )
25 ssfi 7554 . . . . . . . . 9  |-  ( ( ( 0..^ N )  e.  Fin  /\  (
( A sadd  B )  i^i  ( 0..^ N ) )  C_  ( 0..^ N ) )  -> 
( ( A sadd  B
)  i^i  ( 0..^ N ) )  e. 
Fin )
2623, 24, 25sylancl 662 . . . . . . . 8  |-  ( ph  ->  ( ( A sadd  B
)  i^i  ( 0..^ N ) )  e. 
Fin )
27 elfpw 7634 . . . . . . . 8  |-  ( ( ( A sadd  B )  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin ) 
<->  ( ( ( A sadd 
B )  i^i  (
0..^ N ) ) 
C_  NN0  /\  (
( A sadd  B )  i^i  ( 0..^ N ) )  e.  Fin )
)
2821, 26, 27sylanbrc 664 . . . . . . 7  |-  ( ph  ->  ( ( A sadd  B
)  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin ) )
29 bitsf1o 13662 . . . . . . . . . 10  |-  (bits  |`  NN0 ) : NN0
-1-1-onto-> ( ~P NN0  i^i  Fin )
30 f1ocnv 5674 . . . . . . . . . 10  |-  ( (bits  |`  NN0 ) : NN0 -1-1-onto-> ( ~P NN0  i^i  Fin )  ->  `' (bits  |`  NN0 ) : ( ~P NN0  i^i 
Fin ) -1-1-onto-> NN0 )
31 f1of 5662 . . . . . . . . . 10  |-  ( `' (bits  |`  NN0 ) : ( ~P NN0  i^i  Fin ) -1-1-onto-> NN0  ->  `' (bits  |` 
NN0 ) : ( ~P NN0  i^i  Fin )
--> NN0 )
3229, 30, 31mp2b 10 . . . . . . . . 9  |-  `' (bits  |`  NN0 ) : ( ~P NN0  i^i  Fin )
--> NN0
33 sadcadd.k . . . . . . . . . 10  |-  K  =  `' (bits  |`  NN0 )
3433feq1i 5572 . . . . . . . . 9  |-  ( K : ( ~P NN0  i^i 
Fin ) --> NN0  <->  `' (bits  |` 
NN0 ) : ( ~P NN0  i^i  Fin )
--> NN0 )
3532, 34mpbir 209 . . . . . . . 8  |-  K :
( ~P NN0  i^i  Fin ) --> NN0
3635ffvelrni 5863 . . . . . . 7  |-  ( ( ( A sadd  B )  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin )  ->  ( K `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  e.  NN0 )
3728, 36syl 16 . . . . . 6  |-  ( ph  ->  ( K `  (
( A sadd  B )  i^i  ( 0..^ N ) ) )  e.  NN0 )
3837nn0cnd 10659 . . . . 5  |-  ( ph  ->  ( K `  (
( A sadd  B )  i^i  ( 0..^ N ) ) )  e.  CC )
394nncnd 10359 . . . . . 6  |-  ( ph  ->  ( 2 ^ N
)  e.  CC )
40 0cn 9399 . . . . . 6  |-  0  e.  CC
41 ifcl 3852 . . . . . 6  |-  ( ( ( 2 ^ N
)  e.  CC  /\  0  e.  CC )  ->  if ( (/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 )  e.  CC )
4239, 40, 41sylancl 662 . . . . 5  |-  ( ph  ->  if ( (/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 )  e.  CC )
4338, 42pncan2d 9742 . . . 4  |-  ( ph  ->  ( ( ( K `
 ( ( A sadd 
B )  i^i  (
0..^ N ) ) )  +  if (
(/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 ) )  -  ( K `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) ) )  =  if (
(/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 ) )
4413, 43breqtrrd 4339 . . 3  |-  ( ph  ->  ( 2 ^ N
)  ||  ( (
( K `  (
( A sadd  B )  i^i  ( 0..^ N ) ) )  +  if ( (/)  e.  ( C `
 N ) ,  ( 2 ^ N
) ,  0 ) )  -  ( K `
 ( ( A sadd 
B )  i^i  (
0..^ N ) ) ) ) )
4537nn0zd 10766 . . . . 5  |-  ( ph  ->  ( K `  (
( A sadd  B )  i^i  ( 0..^ N ) ) )  e.  ZZ )
465adantr 465 . . . . . 6  |-  ( (
ph  /\  (/)  e.  ( C `  N ) )  ->  ( 2 ^ N )  e.  ZZ )
47 0zd 10679 . . . . . 6  |-  ( (
ph  /\  -.  (/)  e.  ( C `  N ) )  ->  0  e.  ZZ )
4846, 47ifclda 3842 . . . . 5  |-  ( ph  ->  if ( (/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 )  e.  ZZ )
4945, 48zaddcld 10772 . . . 4  |-  ( ph  ->  ( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  +  if ( (/)  e.  ( C `  N
) ,  ( 2 ^ N ) ,  0 ) )  e.  ZZ )
50 moddvds 13563 . . . 4  |-  ( ( ( 2 ^ N
)  e.  NN  /\  ( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  +  if ( (/)  e.  ( C `  N
) ,  ( 2 ^ N ) ,  0 ) )  e.  ZZ  /\  ( K `
 ( ( A sadd 
B )  i^i  (
0..^ N ) ) )  e.  ZZ )  ->  ( ( ( ( K `  (
( A sadd  B )  i^i  ( 0..^ N ) ) )  +  if ( (/)  e.  ( C `
 N ) ,  ( 2 ^ N
) ,  0 ) )  mod  ( 2 ^ N ) )  =  ( ( K `
 ( ( A sadd 
B )  i^i  (
0..^ N ) ) )  mod  ( 2 ^ N ) )  <-> 
( 2 ^ N
)  ||  ( (
( K `  (
( A sadd  B )  i^i  ( 0..^ N ) ) )  +  if ( (/)  e.  ( C `
 N ) ,  ( 2 ^ N
) ,  0 ) )  -  ( K `
 ( ( A sadd 
B )  i^i  (
0..^ N ) ) ) ) ) )
514, 49, 45, 50syl3anc 1218 . . 3  |-  ( ph  ->  ( ( ( ( K `  ( ( A sadd  B )  i^i  ( 0..^ N ) ) )  +  if ( (/)  e.  ( C `
 N ) ,  ( 2 ^ N
) ,  0 ) )  mod  ( 2 ^ N ) )  =  ( ( K `
 ( ( A sadd 
B )  i^i  (
0..^ N ) ) )  mod  ( 2 ^ N ) )  <-> 
( 2 ^ N
)  ||  ( (
( K `  (
( A sadd  B )  i^i  ( 0..^ N ) ) )  +  if ( (/)  e.  ( C `
 N ) ,  ( 2 ^ N
) ,  0 ) )  -  ( K `
 ( ( A sadd 
B )  i^i  (
0..^ N ) ) ) ) ) )
5244, 51mpbird 232 . 2  |-  ( ph  ->  ( ( ( K `
 ( ( A sadd 
B )  i^i  (
0..^ N ) ) )  +  if (
(/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 ) )  mod  ( 2 ^ N ) )  =  ( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  mod  ( 2 ^ N ) ) )
5315, 16, 17, 3, 33sadadd2 13677 . . 3  |-  ( ph  ->  ( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  +  if ( (/)  e.  ( C `  N
) ,  ( 2 ^ N ) ,  0 ) )  =  ( ( K `  ( A  i^i  (
0..^ N ) ) )  +  ( K `
 ( B  i^i  ( 0..^ N ) ) ) ) )
5453oveq1d 6127 . 2  |-  ( ph  ->  ( ( ( K `
 ( ( A sadd 
B )  i^i  (
0..^ N ) ) )  +  if (
(/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 ) )  mod  ( 2 ^ N ) )  =  ( ( ( K `
 ( A  i^i  ( 0..^ N ) ) )  +  ( K `
 ( B  i^i  ( 0..^ N ) ) ) )  mod  (
2 ^ N ) ) )
5552, 54eqtr3d 2477 1  |-  ( ph  ->  ( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  mod  ( 2 ^ N ) )  =  ( ( ( K `
 ( A  i^i  ( 0..^ N ) ) )  +  ( K `
 ( B  i^i  ( 0..^ N ) ) ) )  mod  (
2 ^ N ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369  haddwhad 1419  caddwcad 1420    e. wcel 1756   {crab 2740    i^i cin 3348    C_ wss 3349   (/)c0 3658   ifcif 3812   ~Pcpw 3881   class class class wbr 4313    e. cmpt 4371   `'ccnv 4860    |` cres 4863   -->wf 5435   -1-1-onto->wf1o 5438   ` cfv 5439  (class class class)co 6112    e. cmpt2 6114   1oc1o 6934   2oc2o 6935   Fincfn 7331   CCcc 9301   0cc0 9303   1c1 9304    + caddc 9306    - cmin 9616   NNcn 10343   2c2 10392   NN0cn0 10600   ZZcz 10667  ..^cfzo 11569    mod cmo 11729    seqcseq 11827   ^cexp 11886    || cdivides 13556  bitscbits 13636   sadd csad 13637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-inf2 7868  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380  ax-pre-sup 9381
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-xor 1351  df-tru 1372  df-fal 1375  df-had 1421  df-cad 1422  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-int 4150  df-iun 4194  df-disj 4284  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-se 4701  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-isom 5448  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-om 6498  df-1st 6598  df-2nd 6599  df-recs 6853  df-rdg 6887  df-1o 6941  df-2o 6942  df-oadd 6945  df-er 7122  df-map 7237  df-pm 7238  df-en 7332  df-dom 7333  df-sdom 7334  df-fin 7335  df-sup 7712  df-oi 7745  df-card 8130  df-cda 8358  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-div 10015  df-nn 10344  df-2 10401  df-3 10402  df-n0 10601  df-z 10668  df-uz 10883  df-rp 11013  df-fz 11459  df-fzo 11570  df-fl 11663  df-mod 11730  df-seq 11828  df-exp 11887  df-hash 12125  df-cj 12609  df-re 12610  df-im 12611  df-sqr 12745  df-abs 12746  df-clim 12987  df-sum 13185  df-dvds 13557  df-bits 13639  df-sad 13668
This theorem is referenced by:  sadaddlem  13683  sadasslem  13687  sadeq  13689
  Copyright terms: Public domain W3C validator