MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadadd2lem Structured version   Unicode version

Theorem sadadd2lem 14121
Description: Lemma for sadadd2 14122. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
sadval.a  |-  ( ph  ->  A  C_  NN0 )
sadval.b  |-  ( ph  ->  B  C_  NN0 )
sadval.c  |-  C  =  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
sadcp1.n  |-  ( ph  ->  N  e.  NN0 )
sadcadd.k  |-  K  =  `' (bits  |`  NN0 )
sadadd2lem.1  |-  ( ph  ->  ( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  +  if ( (/)  e.  ( C `  N
) ,  ( 2 ^ N ) ,  0 ) )  =  ( ( K `  ( A  i^i  (
0..^ N ) ) )  +  ( K `
 ( B  i^i  ( 0..^ N ) ) ) ) )
Assertion
Ref Expression
sadadd2lem  |-  ( ph  ->  ( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ ( N  +  1 ) ) ) )  +  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  + 
1 ) ) ,  0 ) )  =  ( ( K `  ( A  i^i  (
0..^ ( N  + 
1 ) ) ) )  +  ( K `
 ( B  i^i  ( 0..^ ( N  + 
1 ) ) ) ) ) )
Distinct variable groups:    m, c, n    A, c, m    B, c, m    n, N
Allowed substitution hints:    ph( m, n, c)    A( n)    B( n)    C( m, n, c)    K( m, n, c)    N( m, c)

Proof of Theorem sadadd2lem
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 inss1 3714 . . . . . . . . 9  |-  ( ( A sadd  B )  i^i  ( 0..^ N ) )  C_  ( A sadd  B )
2 sadval.a . . . . . . . . . . 11  |-  ( ph  ->  A  C_  NN0 )
3 sadval.b . . . . . . . . . . 11  |-  ( ph  ->  B  C_  NN0 )
4 sadval.c . . . . . . . . . . 11  |-  C  =  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
52, 3, 4sadfval 14114 . . . . . . . . . 10  |-  ( ph  ->  ( A sadd  B )  =  { k  e. 
NN0  | hadd ( k  e.  A ,  k  e.  B ,  (/)  e.  ( C `  k ) ) } )
6 ssrab2 3581 . . . . . . . . . 10  |-  { k  e.  NN0  | hadd (
k  e.  A , 
k  e.  B ,  (/) 
e.  ( C `  k ) ) } 
C_  NN0
75, 6syl6eqss 3549 . . . . . . . . 9  |-  ( ph  ->  ( A sadd  B ) 
C_  NN0 )
81, 7syl5ss 3510 . . . . . . . 8  |-  ( ph  ->  ( ( A sadd  B
)  i^i  ( 0..^ N ) )  C_  NN0 )
9 fzofi 12087 . . . . . . . . . 10  |-  ( 0..^ N )  e.  Fin
109a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( 0..^ N )  e.  Fin )
11 inss2 3715 . . . . . . . . 9  |-  ( ( A sadd  B )  i^i  ( 0..^ N ) )  C_  ( 0..^ N )
12 ssfi 7759 . . . . . . . . 9  |-  ( ( ( 0..^ N )  e.  Fin  /\  (
( A sadd  B )  i^i  ( 0..^ N ) )  C_  ( 0..^ N ) )  -> 
( ( A sadd  B
)  i^i  ( 0..^ N ) )  e. 
Fin )
1310, 11, 12sylancl 662 . . . . . . . 8  |-  ( ph  ->  ( ( A sadd  B
)  i^i  ( 0..^ N ) )  e. 
Fin )
14 elfpw 7840 . . . . . . . 8  |-  ( ( ( A sadd  B )  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin ) 
<->  ( ( ( A sadd 
B )  i^i  (
0..^ N ) ) 
C_  NN0  /\  (
( A sadd  B )  i^i  ( 0..^ N ) )  e.  Fin )
)
158, 13, 14sylanbrc 664 . . . . . . 7  |-  ( ph  ->  ( ( A sadd  B
)  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin ) )
16 bitsf1o 14107 . . . . . . . . . 10  |-  (bits  |`  NN0 ) : NN0
-1-1-onto-> ( ~P NN0  i^i  Fin )
17 f1ocnv 5834 . . . . . . . . . 10  |-  ( (bits  |`  NN0 ) : NN0 -1-1-onto-> ( ~P NN0  i^i  Fin )  ->  `' (bits  |`  NN0 ) : ( ~P NN0  i^i 
Fin ) -1-1-onto-> NN0 )
18 f1of 5822 . . . . . . . . . 10  |-  ( `' (bits  |`  NN0 ) : ( ~P NN0  i^i  Fin ) -1-1-onto-> NN0  ->  `' (bits  |` 
NN0 ) : ( ~P NN0  i^i  Fin )
--> NN0 )
1916, 17, 18mp2b 10 . . . . . . . . 9  |-  `' (bits  |`  NN0 ) : ( ~P NN0  i^i  Fin )
--> NN0
20 sadcadd.k . . . . . . . . . 10  |-  K  =  `' (bits  |`  NN0 )
2120feq1i 5729 . . . . . . . . 9  |-  ( K : ( ~P NN0  i^i 
Fin ) --> NN0  <->  `' (bits  |` 
NN0 ) : ( ~P NN0  i^i  Fin )
--> NN0 )
2219, 21mpbir 209 . . . . . . . 8  |-  K :
( ~P NN0  i^i  Fin ) --> NN0
2322ffvelrni 6031 . . . . . . 7  |-  ( ( ( A sadd  B )  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin )  ->  ( K `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  e.  NN0 )
2415, 23syl 16 . . . . . 6  |-  ( ph  ->  ( K `  (
( A sadd  B )  i^i  ( 0..^ N ) ) )  e.  NN0 )
2524nn0cnd 10875 . . . . 5  |-  ( ph  ->  ( K `  (
( A sadd  B )  i^i  ( 0..^ N ) ) )  e.  CC )
26 2nn0 10833 . . . . . . . . . 10  |-  2  e.  NN0
2726a1i 11 . . . . . . . . 9  |-  ( ph  ->  2  e.  NN0 )
28 sadcp1.n . . . . . . . . 9  |-  ( ph  ->  N  e.  NN0 )
2927, 28nn0expcld 12335 . . . . . . . 8  |-  ( ph  ->  ( 2 ^ N
)  e.  NN0 )
30 0nn0 10831 . . . . . . . 8  |-  0  e.  NN0
31 ifcl 3986 . . . . . . . 8  |-  ( ( ( 2 ^ N
)  e.  NN0  /\  0  e.  NN0 )  ->  if ( N  e.  ( A sadd  B ) ,  ( 2 ^ N
) ,  0 )  e.  NN0 )
3229, 30, 31sylancl 662 . . . . . . 7  |-  ( ph  ->  if ( N  e.  ( A sadd  B ) ,  ( 2 ^ N ) ,  0 )  e.  NN0 )
3332nn0cnd 10875 . . . . . 6  |-  ( ph  ->  if ( N  e.  ( A sadd  B ) ,  ( 2 ^ N ) ,  0 )  e.  CC )
34 1nn0 10832 . . . . . . . . . . 11  |-  1  e.  NN0
3534a1i 11 . . . . . . . . . 10  |-  ( ph  ->  1  e.  NN0 )
3628, 35nn0addcld 10877 . . . . . . . . 9  |-  ( ph  ->  ( N  +  1 )  e.  NN0 )
3727, 36nn0expcld 12335 . . . . . . . 8  |-  ( ph  ->  ( 2 ^ ( N  +  1 ) )  e.  NN0 )
38 ifcl 3986 . . . . . . . 8  |-  ( ( ( 2 ^ ( N  +  1 ) )  e.  NN0  /\  0  e.  NN0 )  ->  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  +  1 ) ) ,  0 )  e.  NN0 )
3937, 30, 38sylancl 662 . . . . . . 7  |-  ( ph  ->  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  +  1 ) ) ,  0 )  e.  NN0 )
4039nn0cnd 10875 . . . . . 6  |-  ( ph  ->  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  +  1 ) ) ,  0 )  e.  CC )
4133, 40addcld 9632 . . . . 5  |-  ( ph  ->  ( if ( N  e.  ( A sadd  B
) ,  ( 2 ^ N ) ,  0 )  +  if ( (/)  e.  ( C `
 ( N  + 
1 ) ) ,  ( 2 ^ ( N  +  1 ) ) ,  0 ) )  e.  CC )
4225, 41addcld 9632 . . . 4  |-  ( ph  ->  ( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  +  ( if ( N  e.  ( A sadd 
B ) ,  ( 2 ^ N ) ,  0 )  +  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  +  1 ) ) ,  0 ) ) )  e.  CC )
43 inss1 3714 . . . . . . . . . 10  |-  ( A  i^i  ( 0..^ N ) )  C_  A
4443, 2syl5ss 3510 . . . . . . . . 9  |-  ( ph  ->  ( A  i^i  (
0..^ N ) ) 
C_  NN0 )
45 inss2 3715 . . . . . . . . . 10  |-  ( A  i^i  ( 0..^ N ) )  C_  (
0..^ N )
46 ssfi 7759 . . . . . . . . . 10  |-  ( ( ( 0..^ N )  e.  Fin  /\  ( A  i^i  ( 0..^ N ) )  C_  (
0..^ N ) )  ->  ( A  i^i  ( 0..^ N ) )  e.  Fin )
4710, 45, 46sylancl 662 . . . . . . . . 9  |-  ( ph  ->  ( A  i^i  (
0..^ N ) )  e.  Fin )
48 elfpw 7840 . . . . . . . . 9  |-  ( ( A  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin )  <->  ( ( A  i^i  ( 0..^ N ) )  C_  NN0  /\  ( A  i^i  (
0..^ N ) )  e.  Fin ) )
4944, 47, 48sylanbrc 664 . . . . . . . 8  |-  ( ph  ->  ( A  i^i  (
0..^ N ) )  e.  ( ~P NN0  i^i 
Fin ) )
5022ffvelrni 6031 . . . . . . . 8  |-  ( ( A  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin )  ->  ( K `  ( A  i^i  (
0..^ N ) ) )  e.  NN0 )
5149, 50syl 16 . . . . . . 7  |-  ( ph  ->  ( K `  ( A  i^i  ( 0..^ N ) ) )  e. 
NN0 )
5251nn0cnd 10875 . . . . . 6  |-  ( ph  ->  ( K `  ( A  i^i  ( 0..^ N ) ) )  e.  CC )
53 inss1 3714 . . . . . . . . . 10  |-  ( B  i^i  ( 0..^ N ) )  C_  B
5453, 3syl5ss 3510 . . . . . . . . 9  |-  ( ph  ->  ( B  i^i  (
0..^ N ) ) 
C_  NN0 )
55 inss2 3715 . . . . . . . . . 10  |-  ( B  i^i  ( 0..^ N ) )  C_  (
0..^ N )
56 ssfi 7759 . . . . . . . . . 10  |-  ( ( ( 0..^ N )  e.  Fin  /\  ( B  i^i  ( 0..^ N ) )  C_  (
0..^ N ) )  ->  ( B  i^i  ( 0..^ N ) )  e.  Fin )
5710, 55, 56sylancl 662 . . . . . . . . 9  |-  ( ph  ->  ( B  i^i  (
0..^ N ) )  e.  Fin )
58 elfpw 7840 . . . . . . . . 9  |-  ( ( B  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin )  <->  ( ( B  i^i  ( 0..^ N ) )  C_  NN0  /\  ( B  i^i  (
0..^ N ) )  e.  Fin ) )
5954, 57, 58sylanbrc 664 . . . . . . . 8  |-  ( ph  ->  ( B  i^i  (
0..^ N ) )  e.  ( ~P NN0  i^i 
Fin ) )
6022ffvelrni 6031 . . . . . . . 8  |-  ( ( B  i^i  ( 0..^ N ) )  e.  ( ~P NN0  i^i  Fin )  ->  ( K `  ( B  i^i  (
0..^ N ) ) )  e.  NN0 )
6159, 60syl 16 . . . . . . 7  |-  ( ph  ->  ( K `  ( B  i^i  ( 0..^ N ) ) )  e. 
NN0 )
6261nn0cnd 10875 . . . . . 6  |-  ( ph  ->  ( K `  ( B  i^i  ( 0..^ N ) ) )  e.  CC )
6352, 62addcld 9632 . . . . 5  |-  ( ph  ->  ( ( K `  ( A  i^i  (
0..^ N ) ) )  +  ( K `
 ( B  i^i  ( 0..^ N ) ) ) )  e.  CC )
64 ifcl 3986 . . . . . . . 8  |-  ( ( ( 2 ^ N
)  e.  NN0  /\  0  e.  NN0 )  ->  if ( N  e.  A ,  ( 2 ^ N ) ,  0 )  e.  NN0 )
6529, 30, 64sylancl 662 . . . . . . 7  |-  ( ph  ->  if ( N  e.  A ,  ( 2 ^ N ) ,  0 )  e.  NN0 )
6665nn0cnd 10875 . . . . . 6  |-  ( ph  ->  if ( N  e.  A ,  ( 2 ^ N ) ,  0 )  e.  CC )
67 ifcl 3986 . . . . . . . 8  |-  ( ( ( 2 ^ N
)  e.  NN0  /\  0  e.  NN0 )  ->  if ( N  e.  B ,  ( 2 ^ N ) ,  0 )  e.  NN0 )
6829, 30, 67sylancl 662 . . . . . . 7  |-  ( ph  ->  if ( N  e.  B ,  ( 2 ^ N ) ,  0 )  e.  NN0 )
6968nn0cnd 10875 . . . . . 6  |-  ( ph  ->  if ( N  e.  B ,  ( 2 ^ N ) ,  0 )  e.  CC )
7066, 69addcld 9632 . . . . 5  |-  ( ph  ->  ( if ( N  e.  A ,  ( 2 ^ N ) ,  0 )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) )  e.  CC )
7163, 70addcld 9632 . . . 4  |-  ( ph  ->  ( ( ( K `
 ( A  i^i  ( 0..^ N ) ) )  +  ( K `
 ( B  i^i  ( 0..^ N ) ) ) )  +  ( if ( N  e.  A ,  ( 2 ^ N ) ,  0 )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) ) )  e.  CC )
7229nn0cnd 10875 . . . . . 6  |-  ( ph  ->  ( 2 ^ N
)  e.  CC )
7372adantr 465 . . . . 5  |-  ( (
ph  /\  (/)  e.  ( C `  N ) )  ->  ( 2 ^ N )  e.  CC )
74 0cnd 9606 . . . . 5  |-  ( (
ph  /\  -.  (/)  e.  ( C `  N ) )  ->  0  e.  CC )
7573, 74ifclda 3976 . . . 4  |-  ( ph  ->  if ( (/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 )  e.  CC )
76 sadadd2lem.1 . . . . . 6  |-  ( ph  ->  ( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  +  if ( (/)  e.  ( C `  N
) ,  ( 2 ^ N ) ,  0 ) )  =  ( ( K `  ( A  i^i  (
0..^ N ) ) )  +  ( K `
 ( B  i^i  ( 0..^ N ) ) ) ) )
772, 3, 4, 28sadval 14118 . . . . . . . . 9  |-  ( ph  ->  ( N  e.  ( A sadd  B )  <-> hadd ( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `  N ) ) ) )
7877ifbid 3966 . . . . . . . 8  |-  ( ph  ->  if ( N  e.  ( A sadd  B ) ,  ( 2 ^ N ) ,  0 )  =  if (hadd ( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `
 N ) ) ,  ( 2 ^ N ) ,  0 ) )
792, 3, 4, 28sadcp1 14117 . . . . . . . . 9  |-  ( ph  ->  ( (/)  e.  ( C `  ( N  +  1 ) )  <-> cadd ( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `
 N ) ) ) )
8027nn0cnd 10875 . . . . . . . . . . 11  |-  ( ph  ->  2  e.  CC )
8180, 28expp1d 12314 . . . . . . . . . 10  |-  ( ph  ->  ( 2 ^ ( N  +  1 ) )  =  ( ( 2 ^ N )  x.  2 ) )
8272, 80mulcomd 9634 . . . . . . . . . 10  |-  ( ph  ->  ( ( 2 ^ N )  x.  2 )  =  ( 2  x.  ( 2 ^ N ) ) )
8381, 82eqtrd 2498 . . . . . . . . 9  |-  ( ph  ->  ( 2 ^ ( N  +  1 ) )  =  ( 2  x.  ( 2 ^ N ) ) )
8479, 83ifbieq1d 3967 . . . . . . . 8  |-  ( ph  ->  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  +  1 ) ) ,  0 )  =  if (cadd ( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `
 N ) ) ,  ( 2  x.  ( 2 ^ N
) ) ,  0 ) )
8578, 84oveq12d 6314 . . . . . . 7  |-  ( ph  ->  ( if ( N  e.  ( A sadd  B
) ,  ( 2 ^ N ) ,  0 )  +  if ( (/)  e.  ( C `
 ( N  + 
1 ) ) ,  ( 2 ^ ( N  +  1 ) ) ,  0 ) )  =  ( if (hadd ( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `  N ) ) ,  ( 2 ^ N ) ,  0 )  +  if (cadd ( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `
 N ) ) ,  ( 2  x.  ( 2 ^ N
) ) ,  0 ) ) )
86 sadadd2lem2 14112 . . . . . . . 8  |-  ( ( 2 ^ N )  e.  CC  ->  ( if (hadd ( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `  N ) ) ,  ( 2 ^ N ) ,  0 )  +  if (cadd ( N  e.  A ,  N  e.  B ,  (/)  e.  ( C `
 N ) ) ,  ( 2  x.  ( 2 ^ N
) ) ,  0 ) )  =  ( ( if ( N  e.  A ,  ( 2 ^ N ) ,  0 )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) )  +  if ( (/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 ) ) )
8772, 86syl 16 . . . . . . 7  |-  ( ph  ->  ( if (hadd ( N  e.  A ,  N  e.  B ,  (/) 
e.  ( C `  N ) ) ,  ( 2 ^ N
) ,  0 )  +  if (cadd ( N  e.  A ,  N  e.  B ,  (/) 
e.  ( C `  N ) ) ,  ( 2  x.  (
2 ^ N ) ) ,  0 ) )  =  ( ( if ( N  e.  A ,  ( 2 ^ N ) ,  0 )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) )  +  if ( (/)  e.  ( C `
 N ) ,  ( 2 ^ N
) ,  0 ) ) )
8885, 87eqtrd 2498 . . . . . 6  |-  ( ph  ->  ( if ( N  e.  ( A sadd  B
) ,  ( 2 ^ N ) ,  0 )  +  if ( (/)  e.  ( C `
 ( N  + 
1 ) ) ,  ( 2 ^ ( N  +  1 ) ) ,  0 ) )  =  ( ( if ( N  e.  A ,  ( 2 ^ N ) ,  0 )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) )  +  if ( (/)  e.  ( C `
 N ) ,  ( 2 ^ N
) ,  0 ) ) )
8976, 88oveq12d 6314 . . . . 5  |-  ( ph  ->  ( ( ( K `
 ( ( A sadd 
B )  i^i  (
0..^ N ) ) )  +  if (
(/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 ) )  +  ( if ( N  e.  ( A sadd 
B ) ,  ( 2 ^ N ) ,  0 )  +  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  +  1 ) ) ,  0 ) ) )  =  ( ( ( K `
 ( A  i^i  ( 0..^ N ) ) )  +  ( K `
 ( B  i^i  ( 0..^ N ) ) ) )  +  ( ( if ( N  e.  A ,  ( 2 ^ N ) ,  0 )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) )  +  if ( (/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 ) ) ) )
9025, 41, 75add32d 9821 . . . . 5  |-  ( ph  ->  ( ( ( K `
 ( ( A sadd 
B )  i^i  (
0..^ N ) ) )  +  ( if ( N  e.  ( A sadd  B ) ,  ( 2 ^ N
) ,  0 )  +  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  + 
1 ) ) ,  0 ) ) )  +  if ( (/)  e.  ( C `  N
) ,  ( 2 ^ N ) ,  0 ) )  =  ( ( ( K `
 ( ( A sadd 
B )  i^i  (
0..^ N ) ) )  +  if (
(/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 ) )  +  ( if ( N  e.  ( A sadd 
B ) ,  ( 2 ^ N ) ,  0 )  +  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  +  1 ) ) ,  0 ) ) ) )
9163, 70, 75addassd 9635 . . . . 5  |-  ( ph  ->  ( ( ( ( K `  ( A  i^i  ( 0..^ N ) ) )  +  ( K `  ( B  i^i  ( 0..^ N ) ) ) )  +  ( if ( N  e.  A , 
( 2 ^ N
) ,  0 )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) ) )  +  if (
(/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 ) )  =  ( ( ( K `  ( A  i^i  ( 0..^ N ) ) )  +  ( K `  ( B  i^i  ( 0..^ N ) ) ) )  +  ( ( if ( N  e.  A ,  ( 2 ^ N ) ,  0 )  +  if ( N  e.  B , 
( 2 ^ N
) ,  0 ) )  +  if (
(/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 ) ) ) )
9289, 90, 913eqtr4d 2508 . . . 4  |-  ( ph  ->  ( ( ( K `
 ( ( A sadd 
B )  i^i  (
0..^ N ) ) )  +  ( if ( N  e.  ( A sadd  B ) ,  ( 2 ^ N
) ,  0 )  +  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  + 
1 ) ) ,  0 ) ) )  +  if ( (/)  e.  ( C `  N
) ,  ( 2 ^ N ) ,  0 ) )  =  ( ( ( ( K `  ( A  i^i  ( 0..^ N ) ) )  +  ( K `  ( B  i^i  ( 0..^ N ) ) ) )  +  ( if ( N  e.  A , 
( 2 ^ N
) ,  0 )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) ) )  +  if (
(/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 ) ) )
9342, 71, 75, 92addcan2ad 9803 . . 3  |-  ( ph  ->  ( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  +  ( if ( N  e.  ( A sadd 
B ) ,  ( 2 ^ N ) ,  0 )  +  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  +  1 ) ) ,  0 ) ) )  =  ( ( ( K `
 ( A  i^i  ( 0..^ N ) ) )  +  ( K `
 ( B  i^i  ( 0..^ N ) ) ) )  +  ( if ( N  e.  A ,  ( 2 ^ N ) ,  0 )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) ) ) )
9425, 33, 40addassd 9635 . . 3  |-  ( ph  ->  ( ( ( K `
 ( ( A sadd 
B )  i^i  (
0..^ N ) ) )  +  if ( N  e.  ( A sadd 
B ) ,  ( 2 ^ N ) ,  0 ) )  +  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  + 
1 ) ) ,  0 ) )  =  ( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  +  ( if ( N  e.  ( A sadd 
B ) ,  ( 2 ^ N ) ,  0 )  +  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  +  1 ) ) ,  0 ) ) ) )
9552, 66, 62, 69add4d 9822 . . 3  |-  ( ph  ->  ( ( ( K `
 ( A  i^i  ( 0..^ N ) ) )  +  if ( N  e.  A , 
( 2 ^ N
) ,  0 ) )  +  ( ( K `  ( B  i^i  ( 0..^ N ) ) )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) ) )  =  ( ( ( K `  ( A  i^i  ( 0..^ N ) ) )  +  ( K `  ( B  i^i  ( 0..^ N ) ) ) )  +  ( if ( N  e.  A , 
( 2 ^ N
) ,  0 )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) ) ) )
9693, 94, 953eqtr4d 2508 . 2  |-  ( ph  ->  ( ( ( K `
 ( ( A sadd 
B )  i^i  (
0..^ N ) ) )  +  if ( N  e.  ( A sadd 
B ) ,  ( 2 ^ N ) ,  0 ) )  +  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  + 
1 ) ) ,  0 ) )  =  ( ( ( K `
 ( A  i^i  ( 0..^ N ) ) )  +  if ( N  e.  A , 
( 2 ^ N
) ,  0 ) )  +  ( ( K `  ( B  i^i  ( 0..^ N ) ) )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) ) ) )
9720bitsinvp1 14111 . . . 4  |-  ( ( ( A sadd  B ) 
C_  NN0  /\  N  e. 
NN0 )  ->  ( K `  ( ( A sadd  B )  i^i  (
0..^ ( N  + 
1 ) ) ) )  =  ( ( K `  ( ( A sadd  B )  i^i  ( 0..^ N ) ) )  +  if ( N  e.  ( A sadd  B ) ,  ( 2 ^ N ) ,  0 ) ) )
987, 28, 97syl2anc 661 . . 3  |-  ( ph  ->  ( K `  (
( A sadd  B )  i^i  ( 0..^ ( N  +  1 ) ) ) )  =  ( ( K `  (
( A sadd  B )  i^i  ( 0..^ N ) ) )  +  if ( N  e.  ( A sadd  B ) ,  ( 2 ^ N ) ,  0 ) ) )
9998oveq1d 6311 . 2  |-  ( ph  ->  ( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ ( N  +  1 ) ) ) )  +  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  + 
1 ) ) ,  0 ) )  =  ( ( ( K `
 ( ( A sadd 
B )  i^i  (
0..^ N ) ) )  +  if ( N  e.  ( A sadd 
B ) ,  ( 2 ^ N ) ,  0 ) )  +  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  + 
1 ) ) ,  0 ) ) )
10020bitsinvp1 14111 . . . 4  |-  ( ( A  C_  NN0  /\  N  e.  NN0 )  ->  ( K `  ( A  i^i  ( 0..^ ( N  +  1 ) ) ) )  =  ( ( K `  ( A  i^i  ( 0..^ N ) ) )  +  if ( N  e.  A ,  ( 2 ^ N ) ,  0 ) ) )
1012, 28, 100syl2anc 661 . . 3  |-  ( ph  ->  ( K `  ( A  i^i  ( 0..^ ( N  +  1 ) ) ) )  =  ( ( K `  ( A  i^i  (
0..^ N ) ) )  +  if ( N  e.  A , 
( 2 ^ N
) ,  0 ) ) )
10220bitsinvp1 14111 . . . 4  |-  ( ( B  C_  NN0  /\  N  e.  NN0 )  ->  ( K `  ( B  i^i  ( 0..^ ( N  +  1 ) ) ) )  =  ( ( K `  ( B  i^i  ( 0..^ N ) ) )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) ) )
1033, 28, 102syl2anc 661 . . 3  |-  ( ph  ->  ( K `  ( B  i^i  ( 0..^ ( N  +  1 ) ) ) )  =  ( ( K `  ( B  i^i  (
0..^ N ) ) )  +  if ( N  e.  B , 
( 2 ^ N
) ,  0 ) ) )
104101, 103oveq12d 6314 . 2  |-  ( ph  ->  ( ( K `  ( A  i^i  (
0..^ ( N  + 
1 ) ) ) )  +  ( K `
 ( B  i^i  ( 0..^ ( N  + 
1 ) ) ) ) )  =  ( ( ( K `  ( A  i^i  (
0..^ N ) ) )  +  if ( N  e.  A , 
( 2 ^ N
) ,  0 ) )  +  ( ( K `  ( B  i^i  ( 0..^ N ) ) )  +  if ( N  e.  B ,  ( 2 ^ N ) ,  0 ) ) ) )
10596, 99, 1043eqtr4d 2508 1  |-  ( ph  ->  ( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ ( N  +  1 ) ) ) )  +  if ( (/)  e.  ( C `  ( N  +  1 ) ) ,  ( 2 ^ ( N  + 
1 ) ) ,  0 ) )  =  ( ( K `  ( A  i^i  (
0..^ ( N  + 
1 ) ) ) )  +  ( K `
 ( B  i^i  ( 0..^ ( N  + 
1 ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1395  haddwhad 1445  caddwcad 1446    e. wcel 1819   {crab 2811    i^i cin 3470    C_ wss 3471   (/)c0 3793   ifcif 3944   ~Pcpw 4015    |-> cmpt 4515   `'ccnv 5007    |` cres 5010   -->wf 5590   -1-1-onto->wf1o 5593   ` cfv 5594  (class class class)co 6296    |-> cmpt2 6298   1oc1o 7141   2oc2o 7142   Fincfn 7535   CCcc 9507   0cc0 9509   1c1 9510    + caddc 9512    x. cmul 9514    - cmin 9824   2c2 10606   NN0cn0 10816  ..^cfzo 11821    seqcseq 12110   ^cexp 12169  bitscbits 14081   sadd csad 14082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-xor 1364  df-tru 1398  df-fal 1401  df-had 1447  df-cad 1448  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-disj 4428  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-2o 7149  df-oadd 7152  df-er 7329  df-map 7440  df-pm 7441  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-sup 7919  df-oi 7953  df-card 8337  df-cda 8565  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-n0 10817  df-z 10886  df-uz 11107  df-rp 11246  df-fz 11698  df-fzo 11822  df-fl 11932  df-mod 12000  df-seq 12111  df-exp 12170  df-hash 12409  df-cj 12944  df-re 12945  df-im 12946  df-sqrt 13080  df-abs 13081  df-clim 13323  df-sum 13521  df-dvds 13999  df-bits 14084  df-sad 14113
This theorem is referenced by:  sadadd2  14122
  Copyright terms: Public domain W3C validator