MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadadd2 Structured version   Unicode version

Theorem sadadd2 14211
Description: Sum of initial segments of the sadd sequence. (Contributed by Mario Carneiro, 8-Sep-2016.)
Hypotheses
Ref Expression
sadval.a  |-  ( ph  ->  A  C_  NN0 )
sadval.b  |-  ( ph  ->  B  C_  NN0 )
sadval.c  |-  C  =  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
sadcp1.n  |-  ( ph  ->  N  e.  NN0 )
sadcadd.k  |-  K  =  `' (bits  |`  NN0 )
Assertion
Ref Expression
sadadd2  |-  ( ph  ->  ( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  +  if ( (/)  e.  ( C `  N
) ,  ( 2 ^ N ) ,  0 ) )  =  ( ( K `  ( A  i^i  (
0..^ N ) ) )  +  ( K `
 ( B  i^i  ( 0..^ N ) ) ) ) )
Distinct variable groups:    m, c, n    A, c, m    B, c, m    n, N
Allowed substitution hints:    ph( m, n, c)    A( n)    B( n)    C( m, n, c)    K( m, n, c)    N( m, c)

Proof of Theorem sadadd2
Dummy variables  k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sadcp1.n . 2  |-  ( ph  ->  N  e.  NN0 )
2 oveq2 6242 . . . . . . . . . . 11  |-  ( x  =  0  ->  (
0..^ x )  =  ( 0..^ 0 ) )
3 fzo0 11794 . . . . . . . . . . 11  |-  ( 0..^ 0 )  =  (/)
42, 3syl6eq 2459 . . . . . . . . . 10  |-  ( x  =  0  ->  (
0..^ x )  =  (/) )
54ineq2d 3640 . . . . . . . . 9  |-  ( x  =  0  ->  (
( A sadd  B )  i^i  ( 0..^ x ) )  =  ( ( A sadd  B )  i^i  (/) ) )
6 in0 3764 . . . . . . . . 9  |-  ( ( A sadd  B )  i^i  (/) )  =  (/)
75, 6syl6eq 2459 . . . . . . . 8  |-  ( x  =  0  ->  (
( A sadd  B )  i^i  ( 0..^ x ) )  =  (/) )
87fveq2d 5809 . . . . . . 7  |-  ( x  =  0  ->  ( K `  ( ( A sadd  B )  i^i  (
0..^ x ) ) )  =  ( K `
 (/) ) )
9 sadcadd.k . . . . . . . . 9  |-  K  =  `' (bits  |`  NN0 )
10 0nn0 10771 . . . . . . . . . . 11  |-  0  e.  NN0
11 fvres 5819 . . . . . . . . . . 11  |-  ( 0  e.  NN0  ->  ( (bits  |`  NN0 ) `  0
)  =  (bits ` 
0 ) )
1210, 11ax-mp 5 . . . . . . . . . 10  |-  ( (bits  |`  NN0 ) `  0
)  =  (bits ` 
0 )
13 0bits 14190 . . . . . . . . . 10  |-  (bits ` 
0 )  =  (/)
1412, 13eqtr2i 2432 . . . . . . . . 9  |-  (/)  =  ( (bits  |`  NN0 ) ` 
0 )
159, 14fveq12i 5810 . . . . . . . 8  |-  ( K `
 (/) )  =  ( `' (bits  |`  NN0 ) `  ( (bits  |`  NN0 ) `  0 ) )
16 bitsf1o 14196 . . . . . . . . 9  |-  (bits  |`  NN0 ) : NN0
-1-1-onto-> ( ~P NN0  i^i  Fin )
17 f1ocnvfv1 6119 . . . . . . . . 9  |-  ( ( (bits  |`  NN0 ) : NN0
-1-1-onto-> ( ~P NN0  i^i  Fin )  /\  0  e.  NN0 )  ->  ( `' (bits  |`  NN0 ) `  (
(bits  |`  NN0 ) ` 
0 ) )  =  0 )
1816, 10, 17mp2an 670 . . . . . . . 8  |-  ( `' (bits  |`  NN0 ) `  ( (bits  |`  NN0 ) `  0 ) )  =  0
1915, 18eqtri 2431 . . . . . . 7  |-  ( K `
 (/) )  =  0
208, 19syl6eq 2459 . . . . . 6  |-  ( x  =  0  ->  ( K `  ( ( A sadd  B )  i^i  (
0..^ x ) ) )  =  0 )
21 fveq2 5805 . . . . . . . 8  |-  ( x  =  0  ->  ( C `  x )  =  ( C ` 
0 ) )
2221eleq2d 2472 . . . . . . 7  |-  ( x  =  0  ->  ( (/) 
e.  ( C `  x )  <->  (/)  e.  ( C `  0 ) ) )
23 oveq2 6242 . . . . . . 7  |-  ( x  =  0  ->  (
2 ^ x )  =  ( 2 ^ 0 ) )
2422, 23ifbieq1d 3907 . . . . . 6  |-  ( x  =  0  ->  if ( (/)  e.  ( C `
 x ) ,  ( 2 ^ x
) ,  0 )  =  if ( (/)  e.  ( C `  0
) ,  ( 2 ^ 0 ) ,  0 ) )
2520, 24oveq12d 6252 . . . . 5  |-  ( x  =  0  ->  (
( K `  (
( A sadd  B )  i^i  ( 0..^ x ) ) )  +  if ( (/)  e.  ( C `
 x ) ,  ( 2 ^ x
) ,  0 ) )  =  ( 0  +  if ( (/)  e.  ( C `  0
) ,  ( 2 ^ 0 ) ,  0 ) ) )
264ineq2d 3640 . . . . . . . . . 10  |-  ( x  =  0  ->  ( A  i^i  ( 0..^ x ) )  =  ( A  i^i  (/) ) )
27 in0 3764 . . . . . . . . . 10  |-  ( A  i^i  (/) )  =  (/)
2826, 27syl6eq 2459 . . . . . . . . 9  |-  ( x  =  0  ->  ( A  i^i  ( 0..^ x ) )  =  (/) )
2928fveq2d 5809 . . . . . . . 8  |-  ( x  =  0  ->  ( K `  ( A  i^i  ( 0..^ x ) ) )  =  ( K `  (/) ) )
3029, 19syl6eq 2459 . . . . . . 7  |-  ( x  =  0  ->  ( K `  ( A  i^i  ( 0..^ x ) ) )  =  0 )
314ineq2d 3640 . . . . . . . . . 10  |-  ( x  =  0  ->  ( B  i^i  ( 0..^ x ) )  =  ( B  i^i  (/) ) )
32 in0 3764 . . . . . . . . . 10  |-  ( B  i^i  (/) )  =  (/)
3331, 32syl6eq 2459 . . . . . . . . 9  |-  ( x  =  0  ->  ( B  i^i  ( 0..^ x ) )  =  (/) )
3433fveq2d 5809 . . . . . . . 8  |-  ( x  =  0  ->  ( K `  ( B  i^i  ( 0..^ x ) ) )  =  ( K `  (/) ) )
3534, 19syl6eq 2459 . . . . . . 7  |-  ( x  =  0  ->  ( K `  ( B  i^i  ( 0..^ x ) ) )  =  0 )
3630, 35oveq12d 6252 . . . . . 6  |-  ( x  =  0  ->  (
( K `  ( A  i^i  ( 0..^ x ) ) )  +  ( K `  ( B  i^i  ( 0..^ x ) ) ) )  =  ( 0  +  0 ) )
37 00id 9709 . . . . . 6  |-  ( 0  +  0 )  =  0
3836, 37syl6eq 2459 . . . . 5  |-  ( x  =  0  ->  (
( K `  ( A  i^i  ( 0..^ x ) ) )  +  ( K `  ( B  i^i  ( 0..^ x ) ) ) )  =  0 )
3925, 38eqeq12d 2424 . . . 4  |-  ( x  =  0  ->  (
( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ x ) ) )  +  if ( (/)  e.  ( C `  x
) ,  ( 2 ^ x ) ,  0 ) )  =  ( ( K `  ( A  i^i  (
0..^ x ) ) )  +  ( K `
 ( B  i^i  ( 0..^ x ) ) ) )  <->  ( 0  +  if ( (/)  e.  ( C `  0
) ,  ( 2 ^ 0 ) ,  0 ) )  =  0 ) )
4039imbi2d 314 . . 3  |-  ( x  =  0  ->  (
( ph  ->  ( ( K `  ( ( A sadd  B )  i^i  ( 0..^ x ) ) )  +  if ( (/)  e.  ( C `
 x ) ,  ( 2 ^ x
) ,  0 ) )  =  ( ( K `  ( A  i^i  ( 0..^ x ) ) )  +  ( K `  ( B  i^i  ( 0..^ x ) ) ) ) )  <->  ( ph  ->  ( 0  +  if (
(/)  e.  ( C `  0 ) ,  ( 2 ^ 0 ) ,  0 ) )  =  0 ) ) )
41 oveq2 6242 . . . . . . . 8  |-  ( x  =  k  ->  (
0..^ x )  =  ( 0..^ k ) )
4241ineq2d 3640 . . . . . . 7  |-  ( x  =  k  ->  (
( A sadd  B )  i^i  ( 0..^ x ) )  =  ( ( A sadd  B )  i^i  ( 0..^ k ) ) )
4342fveq2d 5809 . . . . . 6  |-  ( x  =  k  ->  ( K `  ( ( A sadd  B )  i^i  (
0..^ x ) ) )  =  ( K `
 ( ( A sadd 
B )  i^i  (
0..^ k ) ) ) )
44 fveq2 5805 . . . . . . . 8  |-  ( x  =  k  ->  ( C `  x )  =  ( C `  k ) )
4544eleq2d 2472 . . . . . . 7  |-  ( x  =  k  ->  ( (/) 
e.  ( C `  x )  <->  (/)  e.  ( C `  k ) ) )
46 oveq2 6242 . . . . . . 7  |-  ( x  =  k  ->  (
2 ^ x )  =  ( 2 ^ k ) )
4745, 46ifbieq1d 3907 . . . . . 6  |-  ( x  =  k  ->  if ( (/)  e.  ( C `
 x ) ,  ( 2 ^ x
) ,  0 )  =  if ( (/)  e.  ( C `  k
) ,  ( 2 ^ k ) ,  0 ) )
4843, 47oveq12d 6252 . . . . 5  |-  ( x  =  k  ->  (
( K `  (
( A sadd  B )  i^i  ( 0..^ x ) ) )  +  if ( (/)  e.  ( C `
 x ) ,  ( 2 ^ x
) ,  0 ) )  =  ( ( K `  ( ( A sadd  B )  i^i  ( 0..^ k ) ) )  +  if ( (/)  e.  ( C `
 k ) ,  ( 2 ^ k
) ,  0 ) ) )
4941ineq2d 3640 . . . . . . 7  |-  ( x  =  k  ->  ( A  i^i  ( 0..^ x ) )  =  ( A  i^i  ( 0..^ k ) ) )
5049fveq2d 5809 . . . . . 6  |-  ( x  =  k  ->  ( K `  ( A  i^i  ( 0..^ x ) ) )  =  ( K `  ( A  i^i  ( 0..^ k ) ) ) )
5141ineq2d 3640 . . . . . . 7  |-  ( x  =  k  ->  ( B  i^i  ( 0..^ x ) )  =  ( B  i^i  ( 0..^ k ) ) )
5251fveq2d 5809 . . . . . 6  |-  ( x  =  k  ->  ( K `  ( B  i^i  ( 0..^ x ) ) )  =  ( K `  ( B  i^i  ( 0..^ k ) ) ) )
5350, 52oveq12d 6252 . . . . 5  |-  ( x  =  k  ->  (
( K `  ( A  i^i  ( 0..^ x ) ) )  +  ( K `  ( B  i^i  ( 0..^ x ) ) ) )  =  ( ( K `
 ( A  i^i  ( 0..^ k ) ) )  +  ( K `
 ( B  i^i  ( 0..^ k ) ) ) ) )
5448, 53eqeq12d 2424 . . . 4  |-  ( x  =  k  ->  (
( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ x ) ) )  +  if ( (/)  e.  ( C `  x
) ,  ( 2 ^ x ) ,  0 ) )  =  ( ( K `  ( A  i^i  (
0..^ x ) ) )  +  ( K `
 ( B  i^i  ( 0..^ x ) ) ) )  <->  ( ( K `  ( ( A sadd  B )  i^i  (
0..^ k ) ) )  +  if (
(/)  e.  ( C `  k ) ,  ( 2 ^ k ) ,  0 ) )  =  ( ( K `
 ( A  i^i  ( 0..^ k ) ) )  +  ( K `
 ( B  i^i  ( 0..^ k ) ) ) ) ) )
5554imbi2d 314 . . 3  |-  ( x  =  k  ->  (
( ph  ->  ( ( K `  ( ( A sadd  B )  i^i  ( 0..^ x ) ) )  +  if ( (/)  e.  ( C `
 x ) ,  ( 2 ^ x
) ,  0 ) )  =  ( ( K `  ( A  i^i  ( 0..^ x ) ) )  +  ( K `  ( B  i^i  ( 0..^ x ) ) ) ) )  <->  ( ph  ->  ( ( K `  (
( A sadd  B )  i^i  ( 0..^ k ) ) )  +  if ( (/)  e.  ( C `
 k ) ,  ( 2 ^ k
) ,  0 ) )  =  ( ( K `  ( A  i^i  ( 0..^ k ) ) )  +  ( K `  ( B  i^i  ( 0..^ k ) ) ) ) ) ) )
56 oveq2 6242 . . . . . . . 8  |-  ( x  =  ( k  +  1 )  ->  (
0..^ x )  =  ( 0..^ ( k  +  1 ) ) )
5756ineq2d 3640 . . . . . . 7  |-  ( x  =  ( k  +  1 )  ->  (
( A sadd  B )  i^i  ( 0..^ x ) )  =  ( ( A sadd  B )  i^i  ( 0..^ ( k  +  1 ) ) ) )
5857fveq2d 5809 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  ( K `  ( ( A sadd  B )  i^i  (
0..^ x ) ) )  =  ( K `
 ( ( A sadd 
B )  i^i  (
0..^ ( k  +  1 ) ) ) ) )
59 fveq2 5805 . . . . . . . 8  |-  ( x  =  ( k  +  1 )  ->  ( C `  x )  =  ( C `  ( k  +  1 ) ) )
6059eleq2d 2472 . . . . . . 7  |-  ( x  =  ( k  +  1 )  ->  ( (/) 
e.  ( C `  x )  <->  (/)  e.  ( C `  ( k  +  1 ) ) ) )
61 oveq2 6242 . . . . . . 7  |-  ( x  =  ( k  +  1 )  ->  (
2 ^ x )  =  ( 2 ^ ( k  +  1 ) ) )
6260, 61ifbieq1d 3907 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  if ( (/)  e.  ( C `
 x ) ,  ( 2 ^ x
) ,  0 )  =  if ( (/)  e.  ( C `  (
k  +  1 ) ) ,  ( 2 ^ ( k  +  1 ) ) ,  0 ) )
6358, 62oveq12d 6252 . . . . 5  |-  ( x  =  ( k  +  1 )  ->  (
( K `  (
( A sadd  B )  i^i  ( 0..^ x ) ) )  +  if ( (/)  e.  ( C `
 x ) ,  ( 2 ^ x
) ,  0 ) )  =  ( ( K `  ( ( A sadd  B )  i^i  ( 0..^ ( k  +  1 ) ) ) )  +  if ( (/)  e.  ( C `
 ( k  +  1 ) ) ,  ( 2 ^ (
k  +  1 ) ) ,  0 ) ) )
6456ineq2d 3640 . . . . . . 7  |-  ( x  =  ( k  +  1 )  ->  ( A  i^i  ( 0..^ x ) )  =  ( A  i^i  ( 0..^ ( k  +  1 ) ) ) )
6564fveq2d 5809 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  ( K `  ( A  i^i  ( 0..^ x ) ) )  =  ( K `  ( A  i^i  ( 0..^ ( k  +  1 ) ) ) ) )
6656ineq2d 3640 . . . . . . 7  |-  ( x  =  ( k  +  1 )  ->  ( B  i^i  ( 0..^ x ) )  =  ( B  i^i  ( 0..^ ( k  +  1 ) ) ) )
6766fveq2d 5809 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  ( K `  ( B  i^i  ( 0..^ x ) ) )  =  ( K `  ( B  i^i  ( 0..^ ( k  +  1 ) ) ) ) )
6865, 67oveq12d 6252 . . . . 5  |-  ( x  =  ( k  +  1 )  ->  (
( K `  ( A  i^i  ( 0..^ x ) ) )  +  ( K `  ( B  i^i  ( 0..^ x ) ) ) )  =  ( ( K `
 ( A  i^i  ( 0..^ ( k  +  1 ) ) ) )  +  ( K `
 ( B  i^i  ( 0..^ ( k  +  1 ) ) ) ) ) )
6963, 68eqeq12d 2424 . . . 4  |-  ( x  =  ( k  +  1 )  ->  (
( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ x ) ) )  +  if ( (/)  e.  ( C `  x
) ,  ( 2 ^ x ) ,  0 ) )  =  ( ( K `  ( A  i^i  (
0..^ x ) ) )  +  ( K `
 ( B  i^i  ( 0..^ x ) ) ) )  <->  ( ( K `  ( ( A sadd  B )  i^i  (
0..^ ( k  +  1 ) ) ) )  +  if (
(/)  e.  ( C `  ( k  +  1 ) ) ,  ( 2 ^ ( k  +  1 ) ) ,  0 ) )  =  ( ( K `
 ( A  i^i  ( 0..^ ( k  +  1 ) ) ) )  +  ( K `
 ( B  i^i  ( 0..^ ( k  +  1 ) ) ) ) ) ) )
7069imbi2d 314 . . 3  |-  ( x  =  ( k  +  1 )  ->  (
( ph  ->  ( ( K `  ( ( A sadd  B )  i^i  ( 0..^ x ) ) )  +  if ( (/)  e.  ( C `
 x ) ,  ( 2 ^ x
) ,  0 ) )  =  ( ( K `  ( A  i^i  ( 0..^ x ) ) )  +  ( K `  ( B  i^i  ( 0..^ x ) ) ) ) )  <->  ( ph  ->  ( ( K `  (
( A sadd  B )  i^i  ( 0..^ ( k  +  1 ) ) ) )  +  if ( (/)  e.  ( C `
 ( k  +  1 ) ) ,  ( 2 ^ (
k  +  1 ) ) ,  0 ) )  =  ( ( K `  ( A  i^i  ( 0..^ ( k  +  1 ) ) ) )  +  ( K `  ( B  i^i  ( 0..^ ( k  +  1 ) ) ) ) ) ) ) )
71 oveq2 6242 . . . . . . . 8  |-  ( x  =  N  ->  (
0..^ x )  =  ( 0..^ N ) )
7271ineq2d 3640 . . . . . . 7  |-  ( x  =  N  ->  (
( A sadd  B )  i^i  ( 0..^ x ) )  =  ( ( A sadd  B )  i^i  ( 0..^ N ) ) )
7372fveq2d 5809 . . . . . 6  |-  ( x  =  N  ->  ( K `  ( ( A sadd  B )  i^i  (
0..^ x ) ) )  =  ( K `
 ( ( A sadd 
B )  i^i  (
0..^ N ) ) ) )
74 fveq2 5805 . . . . . . . 8  |-  ( x  =  N  ->  ( C `  x )  =  ( C `  N ) )
7574eleq2d 2472 . . . . . . 7  |-  ( x  =  N  ->  ( (/) 
e.  ( C `  x )  <->  (/)  e.  ( C `  N ) ) )
76 oveq2 6242 . . . . . . 7  |-  ( x  =  N  ->  (
2 ^ x )  =  ( 2 ^ N ) )
7775, 76ifbieq1d 3907 . . . . . 6  |-  ( x  =  N  ->  if ( (/)  e.  ( C `
 x ) ,  ( 2 ^ x
) ,  0 )  =  if ( (/)  e.  ( C `  N
) ,  ( 2 ^ N ) ,  0 ) )
7873, 77oveq12d 6252 . . . . 5  |-  ( x  =  N  ->  (
( K `  (
( A sadd  B )  i^i  ( 0..^ x ) ) )  +  if ( (/)  e.  ( C `
 x ) ,  ( 2 ^ x
) ,  0 ) )  =  ( ( K `  ( ( A sadd  B )  i^i  ( 0..^ N ) ) )  +  if ( (/)  e.  ( C `
 N ) ,  ( 2 ^ N
) ,  0 ) ) )
7971ineq2d 3640 . . . . . . 7  |-  ( x  =  N  ->  ( A  i^i  ( 0..^ x ) )  =  ( A  i^i  ( 0..^ N ) ) )
8079fveq2d 5809 . . . . . 6  |-  ( x  =  N  ->  ( K `  ( A  i^i  ( 0..^ x ) ) )  =  ( K `  ( A  i^i  ( 0..^ N ) ) ) )
8171ineq2d 3640 . . . . . . 7  |-  ( x  =  N  ->  ( B  i^i  ( 0..^ x ) )  =  ( B  i^i  ( 0..^ N ) ) )
8281fveq2d 5809 . . . . . 6  |-  ( x  =  N  ->  ( K `  ( B  i^i  ( 0..^ x ) ) )  =  ( K `  ( B  i^i  ( 0..^ N ) ) ) )
8380, 82oveq12d 6252 . . . . 5  |-  ( x  =  N  ->  (
( K `  ( A  i^i  ( 0..^ x ) ) )  +  ( K `  ( B  i^i  ( 0..^ x ) ) ) )  =  ( ( K `
 ( A  i^i  ( 0..^ N ) ) )  +  ( K `
 ( B  i^i  ( 0..^ N ) ) ) ) )
8478, 83eqeq12d 2424 . . . 4  |-  ( x  =  N  ->  (
( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ x ) ) )  +  if ( (/)  e.  ( C `  x
) ,  ( 2 ^ x ) ,  0 ) )  =  ( ( K `  ( A  i^i  (
0..^ x ) ) )  +  ( K `
 ( B  i^i  ( 0..^ x ) ) ) )  <->  ( ( K `  ( ( A sadd  B )  i^i  (
0..^ N ) ) )  +  if (
(/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 ) )  =  ( ( K `
 ( A  i^i  ( 0..^ N ) ) )  +  ( K `
 ( B  i^i  ( 0..^ N ) ) ) ) ) )
8584imbi2d 314 . . 3  |-  ( x  =  N  ->  (
( ph  ->  ( ( K `  ( ( A sadd  B )  i^i  ( 0..^ x ) ) )  +  if ( (/)  e.  ( C `
 x ) ,  ( 2 ^ x
) ,  0 ) )  =  ( ( K `  ( A  i^i  ( 0..^ x ) ) )  +  ( K `  ( B  i^i  ( 0..^ x ) ) ) ) )  <->  ( ph  ->  ( ( K `  (
( A sadd  B )  i^i  ( 0..^ N ) ) )  +  if ( (/)  e.  ( C `
 N ) ,  ( 2 ^ N
) ,  0 ) )  =  ( ( K `  ( A  i^i  ( 0..^ N ) ) )  +  ( K `  ( B  i^i  ( 0..^ N ) ) ) ) ) ) )
86 sadval.a . . . . . . 7  |-  ( ph  ->  A  C_  NN0 )
87 sadval.b . . . . . . 7  |-  ( ph  ->  B  C_  NN0 )
88 sadval.c . . . . . . 7  |-  C  =  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
8986, 87, 88sadc0 14205 . . . . . 6  |-  ( ph  ->  -.  (/)  e.  ( C `
 0 ) )
9089iffalsed 3895 . . . . 5  |-  ( ph  ->  if ( (/)  e.  ( C `  0 ) ,  ( 2 ^ 0 ) ,  0 )  =  0 )
9190oveq2d 6250 . . . 4  |-  ( ph  ->  ( 0  +  if ( (/)  e.  ( C `
 0 ) ,  ( 2 ^ 0 ) ,  0 ) )  =  ( 0  +  0 ) )
9291, 37syl6eq 2459 . . 3  |-  ( ph  ->  ( 0  +  if ( (/)  e.  ( C `
 0 ) ,  ( 2 ^ 0 ) ,  0 ) )  =  0 )
9386ad2antrr 724 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( K `  (
( A sadd  B )  i^i  ( 0..^ k ) ) )  +  if ( (/)  e.  ( C `
 k ) ,  ( 2 ^ k
) ,  0 ) )  =  ( ( K `  ( A  i^i  ( 0..^ k ) ) )  +  ( K `  ( B  i^i  ( 0..^ k ) ) ) ) )  ->  A  C_  NN0 )
9487ad2antrr 724 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( K `  (
( A sadd  B )  i^i  ( 0..^ k ) ) )  +  if ( (/)  e.  ( C `
 k ) ,  ( 2 ^ k
) ,  0 ) )  =  ( ( K `  ( A  i^i  ( 0..^ k ) ) )  +  ( K `  ( B  i^i  ( 0..^ k ) ) ) ) )  ->  B  C_  NN0 )
95 simplr 754 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( K `  (
( A sadd  B )  i^i  ( 0..^ k ) ) )  +  if ( (/)  e.  ( C `
 k ) ,  ( 2 ^ k
) ,  0 ) )  =  ( ( K `  ( A  i^i  ( 0..^ k ) ) )  +  ( K `  ( B  i^i  ( 0..^ k ) ) ) ) )  ->  k  e.  NN0 )
96 simpr 459 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( K `  (
( A sadd  B )  i^i  ( 0..^ k ) ) )  +  if ( (/)  e.  ( C `
 k ) ,  ( 2 ^ k
) ,  0 ) )  =  ( ( K `  ( A  i^i  ( 0..^ k ) ) )  +  ( K `  ( B  i^i  ( 0..^ k ) ) ) ) )  ->  ( ( K `  ( ( A sadd  B )  i^i  (
0..^ k ) ) )  +  if (
(/)  e.  ( C `  k ) ,  ( 2 ^ k ) ,  0 ) )  =  ( ( K `
 ( A  i^i  ( 0..^ k ) ) )  +  ( K `
 ( B  i^i  ( 0..^ k ) ) ) ) )
9793, 94, 88, 95, 9, 96sadadd2lem 14210 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( K `  (
( A sadd  B )  i^i  ( 0..^ k ) ) )  +  if ( (/)  e.  ( C `
 k ) ,  ( 2 ^ k
) ,  0 ) )  =  ( ( K `  ( A  i^i  ( 0..^ k ) ) )  +  ( K `  ( B  i^i  ( 0..^ k ) ) ) ) )  ->  ( ( K `  ( ( A sadd  B )  i^i  (
0..^ ( k  +  1 ) ) ) )  +  if (
(/)  e.  ( C `  ( k  +  1 ) ) ,  ( 2 ^ ( k  +  1 ) ) ,  0 ) )  =  ( ( K `
 ( A  i^i  ( 0..^ ( k  +  1 ) ) ) )  +  ( K `
 ( B  i^i  ( 0..^ ( k  +  1 ) ) ) ) ) )
9897ex 432 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( K `  (
( A sadd  B )  i^i  ( 0..^ k ) ) )  +  if ( (/)  e.  ( C `
 k ) ,  ( 2 ^ k
) ,  0 ) )  =  ( ( K `  ( A  i^i  ( 0..^ k ) ) )  +  ( K `  ( B  i^i  ( 0..^ k ) ) ) )  ->  ( ( K `
 ( ( A sadd 
B )  i^i  (
0..^ ( k  +  1 ) ) ) )  +  if (
(/)  e.  ( C `  ( k  +  1 ) ) ,  ( 2 ^ ( k  +  1 ) ) ,  0 ) )  =  ( ( K `
 ( A  i^i  ( 0..^ ( k  +  1 ) ) ) )  +  ( K `
 ( B  i^i  ( 0..^ ( k  +  1 ) ) ) ) ) ) )
9998expcom 433 . . . 4  |-  ( k  e.  NN0  ->  ( ph  ->  ( ( ( K `
 ( ( A sadd 
B )  i^i  (
0..^ k ) ) )  +  if (
(/)  e.  ( C `  k ) ,  ( 2 ^ k ) ,  0 ) )  =  ( ( K `
 ( A  i^i  ( 0..^ k ) ) )  +  ( K `
 ( B  i^i  ( 0..^ k ) ) ) )  ->  (
( K `  (
( A sadd  B )  i^i  ( 0..^ ( k  +  1 ) ) ) )  +  if ( (/)  e.  ( C `
 ( k  +  1 ) ) ,  ( 2 ^ (
k  +  1 ) ) ,  0 ) )  =  ( ( K `  ( A  i^i  ( 0..^ ( k  +  1 ) ) ) )  +  ( K `  ( B  i^i  ( 0..^ ( k  +  1 ) ) ) ) ) ) ) )
10099a2d 26 . . 3  |-  ( k  e.  NN0  ->  ( (
ph  ->  ( ( K `
 ( ( A sadd 
B )  i^i  (
0..^ k ) ) )  +  if (
(/)  e.  ( C `  k ) ,  ( 2 ^ k ) ,  0 ) )  =  ( ( K `
 ( A  i^i  ( 0..^ k ) ) )  +  ( K `
 ( B  i^i  ( 0..^ k ) ) ) ) )  -> 
( ph  ->  ( ( K `  ( ( A sadd  B )  i^i  ( 0..^ ( k  +  1 ) ) ) )  +  if ( (/)  e.  ( C `
 ( k  +  1 ) ) ,  ( 2 ^ (
k  +  1 ) ) ,  0 ) )  =  ( ( K `  ( A  i^i  ( 0..^ ( k  +  1 ) ) ) )  +  ( K `  ( B  i^i  ( 0..^ ( k  +  1 ) ) ) ) ) ) ) )
10140, 55, 70, 85, 92, 100nn0ind 10918 . 2  |-  ( N  e.  NN0  ->  ( ph  ->  ( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  +  if ( (/)  e.  ( C `  N
) ,  ( 2 ^ N ) ,  0 ) )  =  ( ( K `  ( A  i^i  (
0..^ N ) ) )  +  ( K `
 ( B  i^i  ( 0..^ N ) ) ) ) ) )
1021, 101mpcom 34 1  |-  ( ph  ->  ( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  +  if ( (/)  e.  ( C `  N
) ,  ( 2 ^ N ) ,  0 ) )  =  ( ( K `  ( A  i^i  (
0..^ N ) ) )  +  ( K `
 ( B  i^i  ( 0..^ N ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1405  caddwcad 1460    e. wcel 1842    i^i cin 3412    C_ wss 3413   (/)c0 3737   ifcif 3884   ~Pcpw 3954    |-> cmpt 4452   `'ccnv 4941    |` cres 4944   -1-1-onto->wf1o 5524   ` cfv 5525  (class class class)co 6234    |-> cmpt2 6236   1oc1o 7080   2oc2o 7081   Fincfn 7474   0cc0 9442   1c1 9443    + caddc 9445    - cmin 9761   2c2 10546   NN0cn0 10756  ..^cfzo 11767    seqcseq 12061   ^cexp 12120  bitscbits 14170   sadd csad 14171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6530  ax-inf2 8011  ax-cnex 9498  ax-resscn 9499  ax-1cn 9500  ax-icn 9501  ax-addcl 9502  ax-addrcl 9503  ax-mulcl 9504  ax-mulrcl 9505  ax-mulcom 9506  ax-addass 9507  ax-mulass 9508  ax-distr 9509  ax-i2m1 9510  ax-1ne0 9511  ax-1rid 9512  ax-rnegex 9513  ax-rrecex 9514  ax-cnre 9515  ax-pre-lttri 9516  ax-pre-lttrn 9517  ax-pre-ltadd 9518  ax-pre-mulgt0 9519  ax-pre-sup 9520
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-xor 1367  df-tru 1408  df-fal 1411  df-had 1461  df-cad 1462  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-disj 4366  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-se 4782  df-we 4783  df-ord 4824  df-on 4825  df-lim 4826  df-suc 4827  df-xp 4948  df-rel 4949  df-cnv 4950  df-co 4951  df-dm 4952  df-rn 4953  df-res 4954  df-ima 4955  df-iota 5489  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-isom 5534  df-riota 6196  df-ov 6237  df-oprab 6238  df-mpt2 6239  df-om 6639  df-1st 6738  df-2nd 6739  df-recs 6999  df-rdg 7033  df-1o 7087  df-2o 7088  df-oadd 7091  df-er 7268  df-map 7379  df-pm 7380  df-en 7475  df-dom 7476  df-sdom 7477  df-fin 7478  df-sup 7855  df-oi 7889  df-card 8272  df-cda 8500  df-pnf 9580  df-mnf 9581  df-xr 9582  df-ltxr 9583  df-le 9584  df-sub 9763  df-neg 9764  df-div 10168  df-nn 10497  df-2 10555  df-3 10556  df-n0 10757  df-z 10826  df-uz 11046  df-rp 11184  df-fz 11644  df-fzo 11768  df-fl 11879  df-mod 11948  df-seq 12062  df-exp 12121  df-hash 12360  df-cj 12988  df-re 12989  df-im 12990  df-sqrt 13124  df-abs 13125  df-clim 13367  df-sum 13565  df-dvds 14088  df-bits 14173  df-sad 14202
This theorem is referenced by:  sadadd3  14212
  Copyright terms: Public domain W3C validator