MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s3co Structured version   Unicode version

Theorem s3co 12530
Description: Mapping a length 3 string by a function. (Contributed by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
s2co.1  |-  ( ph  ->  F : X --> Y )
s2co.2  |-  ( ph  ->  A  e.  X )
s2co.3  |-  ( ph  ->  B  e.  X )
s3co.4  |-  ( ph  ->  C  e.  X )
Assertion
Ref Expression
s3co  |-  ( ph  ->  ( F  o.  <" A B C "> )  =  <" ( F `  A
) ( F `  B ) ( F `
 C ) "> )

Proof of Theorem s3co
StepHypRef Expression
1 df-s3 12475 . 2  |-  <" A B C ">  =  ( <" A B "> concat  <" C "> )
2 s2co.2 . . 3  |-  ( ph  ->  A  e.  X )
3 s2co.3 . . 3  |-  ( ph  ->  B  e.  X )
42, 3s2cld 12495 . 2  |-  ( ph  ->  <" A B ">  e. Word  X
)
5 s3co.4 . 2  |-  ( ph  ->  C  e.  X )
6 s2co.1 . 2  |-  ( ph  ->  F : X --> Y )
76, 2, 3s2co 12529 . 2  |-  ( ph  ->  ( F  o.  <" A B "> )  =  <" ( F `  A )
( F `  B
) "> )
8 df-s3 12475 . 2  |-  <" ( F `  A )
( F `  B
) ( F `  C ) ">  =  ( <" ( F `  A )
( F `  B
) "> concat  <" ( F `  C ) "> )
91, 4, 5, 6, 7, 8cats1co 12482 1  |-  ( ph  ->  ( F  o.  <" A B C "> )  =  <" ( F `  A
) ( F `  B ) ( F `
 C ) "> )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1369    e. wcel 1756    o. ccom 4843   -->wf 5413   ` cfv 5417   <"cs2 12467   <"cs3 12468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4402  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371  ax-cnex 9337  ax-resscn 9338  ax-1cn 9339  ax-icn 9340  ax-addcl 9341  ax-addrcl 9342  ax-mulcl 9343  ax-mulrcl 9344  ax-mulcom 9345  ax-addass 9346  ax-mulass 9347  ax-distr 9348  ax-i2m1 9349  ax-1ne0 9350  ax-1rid 9351  ax-rnegex 9352  ax-rrecex 9353  ax-cnre 9354  ax-pre-lttri 9355  ax-pre-lttrn 9356  ax-pre-ltadd 9357  ax-pre-mulgt0 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2719  df-rex 2720  df-reu 2721  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-pss 3343  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-tp 3881  df-op 3883  df-uni 4091  df-int 4128  df-iun 4172  df-br 4292  df-opab 4350  df-mpt 4351  df-tr 4385  df-eprel 4631  df-id 4635  df-po 4640  df-so 4641  df-fr 4678  df-we 4680  df-ord 4721  df-on 4722  df-lim 4723  df-suc 4724  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-riota 6051  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6831  df-rdg 6865  df-1o 6919  df-oadd 6923  df-er 7100  df-en 7310  df-dom 7311  df-sdom 7312  df-fin 7313  df-card 8108  df-pnf 9419  df-mnf 9420  df-xr 9421  df-ltxr 9422  df-le 9423  df-sub 9596  df-neg 9597  df-nn 10322  df-n0 10579  df-z 10646  df-uz 10861  df-fz 11437  df-fzo 11548  df-hash 12103  df-word 12228  df-concat 12230  df-s1 12231  df-s2 12474  df-s3 12475
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator