MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s1co Structured version   Unicode version

Theorem s1co 12779
Description: Mapping of a singleton word. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
s1co  |-  ( ( S  e.  A  /\  F : A --> B )  ->  ( F  o.  <" S "> )  =  <" ( F `  S ) "> )

Proof of Theorem s1co
StepHypRef Expression
1 s1val 12590 . . . . 5  |-  ( S  e.  A  ->  <" S ">  =  { <. 0 ,  S >. } )
2 0cn 9600 . . . . . 6  |-  0  e.  CC
3 xpsng 6073 . . . . . 6  |-  ( ( 0  e.  CC  /\  S  e.  A )  ->  ( { 0 }  X.  { S }
)  =  { <. 0 ,  S >. } )
42, 3mpan 670 . . . . 5  |-  ( S  e.  A  ->  ( { 0 }  X.  { S } )  =  { <. 0 ,  S >. } )
51, 4eqtr4d 2511 . . . 4  |-  ( S  e.  A  ->  <" S ">  =  ( { 0 }  X.  { S } ) )
65adantr 465 . . 3  |-  ( ( S  e.  A  /\  F : A --> B )  ->  <" S ">  =  ( { 0 }  X.  { S } ) )
76coeq2d 5171 . 2  |-  ( ( S  e.  A  /\  F : A --> B )  ->  ( F  o.  <" S "> )  =  ( F  o.  ( { 0 }  X.  { S }
) ) )
8 ffn 5737 . . . 4  |-  ( F : A --> B  ->  F  Fn  A )
9 id 22 . . . 4  |-  ( S  e.  A  ->  S  e.  A )
10 fcoconst 6069 . . . 4  |-  ( ( F  Fn  A  /\  S  e.  A )  ->  ( F  o.  ( { 0 }  X.  { S } ) )  =  ( { 0 }  X.  { ( F `  S ) } ) )
118, 9, 10syl2anr 478 . . 3  |-  ( ( S  e.  A  /\  F : A --> B )  ->  ( F  o.  ( { 0 }  X.  { S } ) )  =  ( { 0 }  X.  { ( F `  S ) } ) )
12 fvex 5882 . . . . 5  |-  ( F `
 S )  e. 
_V
13 s1val 12590 . . . . 5  |-  ( ( F `  S )  e.  _V  ->  <" ( F `  S ) ">  =  { <. 0 ,  ( F `  S ) >. } )
1412, 13ax-mp 5 . . . 4  |-  <" ( F `  S ) ">  =  { <. 0 ,  ( F `  S ) >. }
15 c0ex 9602 . . . . 5  |-  0  e.  _V
1615, 12xpsn 6074 . . . 4  |-  ( { 0 }  X.  {
( F `  S
) } )  =  { <. 0 ,  ( F `  S )
>. }
1714, 16eqtr4i 2499 . . 3  |-  <" ( F `  S ) ">  =  ( { 0 }  X.  {
( F `  S
) } )
1811, 17syl6reqr 2527 . 2  |-  ( ( S  e.  A  /\  F : A --> B )  ->  <" ( F `
 S ) ">  =  ( F  o.  ( { 0 }  X.  { S } ) ) )
197, 18eqtr4d 2511 1  |-  ( ( S  e.  A  /\  F : A --> B )  ->  ( F  o.  <" S "> )  =  <" ( F `  S ) "> )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   _Vcvv 3118   {csn 4033   <.cop 4039    X. cxp 5003    o. ccom 5009    Fn wfn 5589   -->wf 5590   ` cfv 5594   CCcc 9502   0cc0 9504   <"cs1 12518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-mulcl 9566  ax-i2m1 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-s1 12526
This theorem is referenced by:  cats1co  12801  s2co  12848  frmdgsum  15902  frmdup2  15905  efginvrel2  16618  vrgpinv  16660  frgpup2  16667  mrsubcv  28695
  Copyright terms: Public domain W3C validator