MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgra0edg Structured version   Unicode version

Theorem rusgra0edg 25082
Description: Special case for graphs without edges: There are no walks of length greater than 0. (Contributed by Alexander van der Vekens, 26-Jul-2018.)
Hypotheses
Ref Expression
rusgranumwlk.w  |-  W  =  ( n  e.  NN0  |->  { c  e.  ( V Walks  E )  |  ( # `  ( 1st `  c ) )  =  n } )
rusgranumwlk.l  |-  L  =  ( v  e.  V ,  n  e.  NN0  |->  ( # `  { w  e.  ( W `  n
)  |  ( ( 2nd `  w ) `
 0 )  =  v } ) )
Assertion
Ref Expression
rusgra0edg  |-  ( (
<. V ,  E >. RegUSGrph  0  /\  P  e.  V  /\  N  e.  NN )  ->  ( P L N )  =  0 )
Distinct variable groups:    E, c, n    N, c, n    V, c, n    v, N, w    P, n, v, w    v, V    n, W, v, w   
w, V, c    v, E, w
Allowed substitution hints:    P( c)    L( w, v, n, c)    W( c)

Proof of Theorem rusgra0edg
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 rusisusgra 25058 . . 3  |-  ( <. V ,  E >. RegUSGrph  0  ->  V USGrph  E )
2 id 22 . . 3  |-  ( P  e.  V  ->  P  e.  V )
3 nnnn0 10823 . . 3  |-  ( N  e.  NN  ->  N  e.  NN0 )
4 rusgranumwlk.w . . . 4  |-  W  =  ( n  e.  NN0  |->  { c  e.  ( V Walks  E )  |  ( # `  ( 1st `  c ) )  =  n } )
5 rusgranumwlk.l . . . 4  |-  L  =  ( v  e.  V ,  n  e.  NN0  |->  ( # `  { w  e.  ( W `  n
)  |  ( ( 2nd `  w ) `
 0 )  =  v } ) )
64, 5rusgranumwlklem4 25079 . . 3  |-  ( ( V USGrph  E  /\  P  e.  V  /\  N  e. 
NN0 )  ->  ( P L N )  =  ( # `  {
w  e.  ( ( V WWalksN  E ) `  N
)  |  ( w `
 0 )  =  P } ) )
71, 2, 3, 6syl3an 1270 . 2  |-  ( (
<. V ,  E >. RegUSGrph  0  /\  P  e.  V  /\  N  e.  NN )  ->  ( P L N )  =  (
# `  { w  e.  ( ( V WWalksN  E
) `  N )  |  ( w ` 
0 )  =  P } ) )
8 df-rab 2816 . . . . 5  |-  { w  e.  ( ( V WWalksN  E
) `  N )  |  ( w ` 
0 )  =  P }  =  { w  |  ( w  e.  ( ( V WWalksN  E
) `  N )  /\  ( w `  0
)  =  P ) }
9 usgrav 24465 . . . . . . . . . . . . . 14  |-  ( V USGrph  E  ->  ( V  e. 
_V  /\  E  e.  _V ) )
101, 9syl 16 . . . . . . . . . . . . 13  |-  ( <. V ,  E >. RegUSGrph  0  ->  ( V  e.  _V  /\  E  e.  _V )
)
1110, 3anim12i 566 . . . . . . . . . . . 12  |-  ( (
<. V ,  E >. RegUSGrph  0  /\  N  e.  NN )  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  N  e.  NN0 ) )
12113adant2 1015 . . . . . . . . . . 11  |-  ( (
<. V ,  E >. RegUSGrph  0  /\  P  e.  V  /\  N  e.  NN )  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  N  e.  NN0 ) )
13 df-3an 975 . . . . . . . . . . 11  |-  ( ( V  e.  _V  /\  E  e.  _V  /\  N  e.  NN0 )  <->  ( ( V  e.  _V  /\  E  e.  _V )  /\  N  e.  NN0 ) )
1412, 13sylibr 212 . . . . . . . . . 10  |-  ( (
<. V ,  E >. RegUSGrph  0  /\  P  e.  V  /\  N  e.  NN )  ->  ( V  e. 
_V  /\  E  e.  _V  /\  N  e.  NN0 ) )
15 iswwlkn 24811 . . . . . . . . . . 11  |-  ( ( V  e.  _V  /\  E  e.  _V  /\  N  e.  NN0 )  ->  (
w  e.  ( ( V WWalksN  E ) `  N
)  <->  ( w  e.  ( V WWalks  E )  /\  ( # `  w
)  =  ( N  +  1 ) ) ) )
16 iswwlk 24810 . . . . . . . . . . . . 13  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  ( w  e.  ( V WWalks  E )  <->  ( w  =/=  (/)  /\  w  e. Word  V  /\  A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  ran  E
) ) )
17163adant3 1016 . . . . . . . . . . . 12  |-  ( ( V  e.  _V  /\  E  e.  _V  /\  N  e.  NN0 )  ->  (
w  e.  ( V WWalks  E )  <->  ( w  =/=  (/)  /\  w  e. Word  V  /\  A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  ran  E
) ) )
1817anbi1d 704 . . . . . . . . . . 11  |-  ( ( V  e.  _V  /\  E  e.  _V  /\  N  e.  NN0 )  ->  (
( w  e.  ( V WWalks  E )  /\  ( # `  w )  =  ( N  + 
1 ) )  <->  ( (
w  =/=  (/)  /\  w  e. Word  V  /\  A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  ran  E
)  /\  ( # `  w
)  =  ( N  +  1 ) ) ) )
1915, 18bitrd 253 . . . . . . . . . 10  |-  ( ( V  e.  _V  /\  E  e.  _V  /\  N  e.  NN0 )  ->  (
w  e.  ( ( V WWalksN  E ) `  N
)  <->  ( ( w  =/=  (/)  /\  w  e. Word  V  /\  A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  ran  E
)  /\  ( # `  w
)  =  ( N  +  1 ) ) ) )
2014, 19syl 16 . . . . . . . . 9  |-  ( (
<. V ,  E >. RegUSGrph  0  /\  P  e.  V  /\  N  e.  NN )  ->  ( w  e.  ( ( V WWalksN  E
) `  N )  <->  ( ( w  =/=  (/)  /\  w  e. Word  V  /\  A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  ran  E
)  /\  ( # `  w
)  =  ( N  +  1 ) ) ) )
2120anbi1d 704 . . . . . . . 8  |-  ( (
<. V ,  E >. RegUSGrph  0  /\  P  e.  V  /\  N  e.  NN )  ->  ( ( w  e.  ( ( V WWalksN  E ) `  N
)  /\  ( w `  0 )  =  P )  <->  ( (
( w  =/=  (/)  /\  w  e. Word  V  /\  A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  ran  E
)  /\  ( # `  w
)  =  ( N  +  1 ) )  /\  ( w ` 
0 )  =  P ) ) )
22 oveq1 6303 . . . . . . . . . . . . . . . . 17  |-  ( (
# `  w )  =  ( N  + 
1 )  ->  (
( # `  w )  -  1 )  =  ( ( N  + 
1 )  -  1 ) )
23 nncn 10564 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN  ->  N  e.  CC )
24 1cnd 9629 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN  ->  1  e.  CC )
2523, 24pncand 9951 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN  ->  (
( N  +  1 )  -  1 )  =  N )
26253ad2ant3 1019 . . . . . . . . . . . . . . . . 17  |-  ( (
<. V ,  E >. RegUSGrph  0  /\  P  e.  V  /\  N  e.  NN )  ->  ( ( N  +  1 )  - 
1 )  =  N )
2722, 26sylan9eqr 2520 . . . . . . . . . . . . . . . 16  |-  ( ( ( <. V ,  E >. RegUSGrph 
0  /\  P  e.  V  /\  N  e.  NN )  /\  ( # `  w
)  =  ( N  +  1 ) )  ->  ( ( # `  w )  -  1 )  =  N )
2827oveq2d 6312 . . . . . . . . . . . . . . 15  |-  ( ( ( <. V ,  E >. RegUSGrph 
0  /\  P  e.  V  /\  N  e.  NN )  /\  ( # `  w
)  =  ( N  +  1 ) )  ->  ( 0..^ ( ( # `  w
)  -  1 ) )  =  ( 0..^ N ) )
2928raleqdv 3060 . . . . . . . . . . . . . 14  |-  ( ( ( <. V ,  E >. RegUSGrph 
0  /\  P  e.  V  /\  N  e.  NN )  /\  ( # `  w
)  =  ( N  +  1 ) )  ->  ( A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  ran  E  <->  A. i  e.  ( 0..^ N ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  ran  E ) )
30 rusgrargra 25057 . . . . . . . . . . . . . . . . 17  |-  ( <. V ,  E >. RegUSGrph  0  -> 
<. V ,  E >. RegGrph  0 )
31 0eusgraiff0rgra 25066 . . . . . . . . . . . . . . . . . 18  |-  ( V USGrph  E  ->  ( <. V ,  E >. RegGrph  0  <->  E  =  (/) ) )
32 rneq 5238 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( E  =  (/)  ->  ran  E  =  ran  (/) )
33 rn0 5264 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ran  (/)  =  (/)
3432, 33syl6eq 2514 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( E  =  (/)  ->  ran  E  =  (/) )
3534eleq2d 2527 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( E  =  (/)  ->  ( { ( w `  i
) ,  ( w `
 ( i  +  1 ) ) }  e.  ran  E  <->  { (
w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (/) ) )
36 noel 3797 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  -.  {
( w `  i
) ,  ( w `
 ( i  +  1 ) ) }  e.  (/)
3736bifal 1408 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( { ( w `  i
) ,  ( w `
 ( i  +  1 ) ) }  e.  (/)  <-> F.  )
3835, 37syl6bb 261 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( E  =  (/)  ->  ( { ( w `  i
) ,  ( w `
 ( i  +  1 ) ) }  e.  ran  E  <-> F.  )
)
3938adantr 465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( E  =  (/)  /\  ( P  e.  V  /\  N  e.  NN )
)  ->  ( {
( w `  i
) ,  ( w `
 ( i  +  1 ) ) }  e.  ran  E  <-> F.  )
)
4039ralbidv 2896 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( E  =  (/)  /\  ( P  e.  V  /\  N  e.  NN )
)  ->  ( A. i  e.  ( 0..^ N ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  ran  E  <->  A. i  e.  ( 0..^ N ) F.  ) )
41 fal 1402 . . . . . . . . . . . . . . . . . . . . . 22  |-  -. F.
4241ralf0 3939 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A. i  e.  ( 0..^ N ) F.  <->  ( 0..^ N )  =  (/) )
4342a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( E  =  (/)  /\  ( P  e.  V  /\  N  e.  NN )
)  ->  ( A. i  e.  ( 0..^ N ) F.  <->  ( 0..^ N )  =  (/) ) )
44 0nn0 10831 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  0  e.  NN0
4544a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( N  e.  NN  ->  0  e.  NN0 )
46 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( N  e.  NN  ->  N  e.  NN )
47 nngt0 10585 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( N  e.  NN  ->  0  <  N )
4845, 46, 473jca 1176 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( N  e.  NN  ->  (
0  e.  NN0  /\  N  e.  NN  /\  0  <  N ) )
4948ad2antll 728 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( E  =  (/)  /\  ( P  e.  V  /\  N  e.  NN )
)  ->  ( 0  e.  NN0  /\  N  e.  NN  /\  0  < 
N ) )
50 elfzo0 11862 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( 0  e.  ( 0..^ N )  <->  ( 0  e. 
NN0  /\  N  e.  NN  /\  0  <  N
) )
5149, 50sylibr 212 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( E  =  (/)  /\  ( P  e.  V  /\  N  e.  NN )
)  ->  0  e.  ( 0..^ N ) )
52 fzon0 11843 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 0..^ N )  =/=  (/) 
<->  0  e.  ( 0..^ N ) )
5351, 52sylibr 212 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( E  =  (/)  /\  ( P  e.  V  /\  N  e.  NN )
)  ->  ( 0..^ N )  =/=  (/) )
5453neneqd 2659 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( E  =  (/)  /\  ( P  e.  V  /\  N  e.  NN )
)  ->  -.  (
0..^ N )  =  (/) )
55 nbfal 1406 . . . . . . . . . . . . . . . . . . . . 21  |-  ( -.  ( 0..^ N )  =  (/)  <->  ( ( 0..^ N )  =  (/)  <-> F.  ) )
5654, 55sylib 196 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( E  =  (/)  /\  ( P  e.  V  /\  N  e.  NN )
)  ->  ( (
0..^ N )  =  (/) 
<-> F.  ) )
5740, 43, 563bitrd 279 . . . . . . . . . . . . . . . . . . 19  |-  ( ( E  =  (/)  /\  ( P  e.  V  /\  N  e.  NN )
)  ->  ( A. i  e.  ( 0..^ N ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  ran  E  <-> F.  ) )
5857ex 434 . . . . . . . . . . . . . . . . . 18  |-  ( E  =  (/)  ->  ( ( P  e.  V  /\  N  e.  NN )  ->  ( A. i  e.  ( 0..^ N ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  ran  E  <-> F.  ) ) )
5931, 58syl6bi 228 . . . . . . . . . . . . . . . . 17  |-  ( V USGrph  E  ->  ( <. V ,  E >. RegGrph  0  ->  ( ( P  e.  V  /\  N  e.  NN )  ->  ( A. i  e.  ( 0..^ N ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  ran  E  <-> F.  ) ) ) )
601, 30, 59sylc 60 . . . . . . . . . . . . . . . 16  |-  ( <. V ,  E >. RegUSGrph  0  ->  ( ( P  e.  V  /\  N  e.  NN )  ->  ( A. i  e.  (
0..^ N ) { ( w `  i
) ,  ( w `
 ( i  +  1 ) ) }  e.  ran  E  <-> F.  )
) )
61603impib 1194 . . . . . . . . . . . . . . 15  |-  ( (
<. V ,  E >. RegUSGrph  0  /\  P  e.  V  /\  N  e.  NN )  ->  ( A. i  e.  ( 0..^ N ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  ran  E  <-> F.  ) )
6261adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( <. V ,  E >. RegUSGrph 
0  /\  P  e.  V  /\  N  e.  NN )  /\  ( # `  w
)  =  ( N  +  1 ) )  ->  ( A. i  e.  ( 0..^ N ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  ran  E  <-> F.  ) )
6329, 62bitrd 253 . . . . . . . . . . . . 13  |-  ( ( ( <. V ,  E >. RegUSGrph 
0  /\  P  e.  V  /\  N  e.  NN )  /\  ( # `  w
)  =  ( N  +  1 ) )  ->  ( A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  ran  E  <-> F.  ) )
64633anbi3d 1305 . . . . . . . . . . . 12  |-  ( ( ( <. V ,  E >. RegUSGrph 
0  /\  P  e.  V  /\  N  e.  NN )  /\  ( # `  w
)  =  ( N  +  1 ) )  ->  ( ( w  =/=  (/)  /\  w  e. Word  V  /\  A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  ran  E
)  <->  ( w  =/=  (/)  /\  w  e. Word  V  /\ F.  ) ) )
65 df-3an 975 . . . . . . . . . . . . 13  |-  ( ( w  =/=  (/)  /\  w  e. Word  V  /\ F.  )  <->  ( ( w  =/=  (/)  /\  w  e. Word  V )  /\ F.  ) )
66 ancom 450 . . . . . . . . . . . . 13  |-  ( ( ( w  =/=  (/)  /\  w  e. Word  V )  /\ F.  ) 
<->  ( F.  /\  (
w  =/=  (/)  /\  w  e. Word  V ) ) )
6765, 66bitri 249 . . . . . . . . . . . 12  |-  ( ( w  =/=  (/)  /\  w  e. Word  V  /\ F.  )  <->  ( F.  /\  ( w  =/=  (/)  /\  w  e. Word  V ) ) )
6864, 67syl6bb 261 . . . . . . . . . . 11  |-  ( ( ( <. V ,  E >. RegUSGrph 
0  /\  P  e.  V  /\  N  e.  NN )  /\  ( # `  w
)  =  ( N  +  1 ) )  ->  ( ( w  =/=  (/)  /\  w  e. Word  V  /\  A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  ran  E
)  <->  ( F.  /\  ( w  =/=  (/)  /\  w  e. Word  V ) ) ) )
6968ex 434 . . . . . . . . . 10  |-  ( (
<. V ,  E >. RegUSGrph  0  /\  P  e.  V  /\  N  e.  NN )  ->  ( ( # `  w )  =  ( N  +  1 )  ->  ( ( w  =/=  (/)  /\  w  e. Word  V  /\  A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  ran  E
)  <->  ( F.  /\  ( w  =/=  (/)  /\  w  e. Word  V ) ) ) ) )
7069pm5.32rd 640 . . . . . . . . 9  |-  ( (
<. V ,  E >. RegUSGrph  0  /\  P  e.  V  /\  N  e.  NN )  ->  ( ( ( w  =/=  (/)  /\  w  e. Word  V  /\  A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  ran  E
)  /\  ( # `  w
)  =  ( N  +  1 ) )  <-> 
( ( F.  /\  ( w  =/=  (/)  /\  w  e. Word  V ) )  /\  ( # `  w )  =  ( N  + 
1 ) ) ) )
7170anbi1d 704 . . . . . . . 8  |-  ( (
<. V ,  E >. RegUSGrph  0  /\  P  e.  V  /\  N  e.  NN )  ->  ( ( ( ( w  =/=  (/)  /\  w  e. Word  V  /\  A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  ran  E
)  /\  ( # `  w
)  =  ( N  +  1 ) )  /\  ( w ` 
0 )  =  P )  <->  ( ( ( F.  /\  ( w  =/=  (/)  /\  w  e. Word  V ) )  /\  ( # `  w )  =  ( N  + 
1 ) )  /\  ( w `  0
)  =  P ) ) )
72 anass 649 . . . . . . . . . 10  |-  ( ( ( ( F.  /\  ( w  =/=  (/)  /\  w  e. Word  V ) )  /\  ( # `  w )  =  ( N  + 
1 ) )  /\  ( w `  0
)  =  P )  <-> 
( ( F.  /\  ( w  =/=  (/)  /\  w  e. Word  V ) )  /\  ( ( # `  w
)  =  ( N  +  1 )  /\  ( w `  0
)  =  P ) ) )
73 anass 649 . . . . . . . . . . 11  |-  ( ( ( F.  /\  (
w  =/=  (/)  /\  w  e. Word  V ) )  /\  ( ( # `  w
)  =  ( N  +  1 )  /\  ( w `  0
)  =  P ) )  <->  ( F.  /\  ( ( w  =/=  (/)  /\  w  e. Word  V
)  /\  ( ( # `
 w )  =  ( N  +  1 )  /\  ( w `
 0 )  =  P ) ) ) )
7441intnanr 915 . . . . . . . . . . . 12  |-  -.  ( F.  /\  ( ( w  =/=  (/)  /\  w  e. Word  V )  /\  (
( # `  w )  =  ( N  + 
1 )  /\  (
w `  0 )  =  P ) ) )
7574bifal 1408 . . . . . . . . . . 11  |-  ( ( F.  /\  ( ( w  =/=  (/)  /\  w  e. Word  V )  /\  (
( # `  w )  =  ( N  + 
1 )  /\  (
w `  0 )  =  P ) ) )  <-> F.  )
7673, 75bitri 249 . . . . . . . . . 10  |-  ( ( ( F.  /\  (
w  =/=  (/)  /\  w  e. Word  V ) )  /\  ( ( # `  w
)  =  ( N  +  1 )  /\  ( w `  0
)  =  P ) )  <-> F.  )
7772, 76bitri 249 . . . . . . . . 9  |-  ( ( ( ( F.  /\  ( w  =/=  (/)  /\  w  e. Word  V ) )  /\  ( # `  w )  =  ( N  + 
1 ) )  /\  ( w `  0
)  =  P )  <-> F.  )
7877a1i 11 . . . . . . . 8  |-  ( (
<. V ,  E >. RegUSGrph  0  /\  P  e.  V  /\  N  e.  NN )  ->  ( ( ( ( F.  /\  (
w  =/=  (/)  /\  w  e. Word  V ) )  /\  ( # `  w )  =  ( N  + 
1 ) )  /\  ( w `  0
)  =  P )  <-> F.  ) )
7921, 71, 783bitrd 279 . . . . . . 7  |-  ( (
<. V ,  E >. RegUSGrph  0  /\  P  e.  V  /\  N  e.  NN )  ->  ( ( w  e.  ( ( V WWalksN  E ) `  N
)  /\  ( w `  0 )  =  P )  <-> F.  )
)
8079abbidv 2593 . . . . . 6  |-  ( (
<. V ,  E >. RegUSGrph  0  /\  P  e.  V  /\  N  e.  NN )  ->  { w  |  ( w  e.  ( ( V WWalksN  E ) `  N )  /\  (
w `  0 )  =  P ) }  =  { w  | F.  } )
8141abf 3828 . . . . . 6  |-  { w  | F.  }  =  (/)
8280, 81syl6eq 2514 . . . . 5  |-  ( (
<. V ,  E >. RegUSGrph  0  /\  P  e.  V  /\  N  e.  NN )  ->  { w  |  ( w  e.  ( ( V WWalksN  E ) `  N )  /\  (
w `  0 )  =  P ) }  =  (/) )
838, 82syl5eq 2510 . . . 4  |-  ( (
<. V ,  E >. RegUSGrph  0  /\  P  e.  V  /\  N  e.  NN )  ->  { w  e.  ( ( V WWalksN  E
) `  N )  |  ( w ` 
0 )  =  P }  =  (/) )
8483fveq2d 5876 . . 3  |-  ( (
<. V ,  E >. RegUSGrph  0  /\  P  e.  V  /\  N  e.  NN )  ->  ( # `  {
w  e.  ( ( V WWalksN  E ) `  N
)  |  ( w `
 0 )  =  P } )  =  ( # `  (/) ) )
85 hash0 12440 . . 3  |-  ( # `  (/) )  =  0
8684, 85syl6eq 2514 . 2  |-  ( (
<. V ,  E >. RegUSGrph  0  /\  P  e.  V  /\  N  e.  NN )  ->  ( # `  {
w  e.  ( ( V WWalksN  E ) `  N
)  |  ( w `
 0 )  =  P } )  =  0 )
877, 86eqtrd 2498 1  |-  ( (
<. V ,  E >. RegUSGrph  0  /\  P  e.  V  /\  N  e.  NN )  ->  ( P L N )  =  0 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395   F. wfal 1400    e. wcel 1819   {cab 2442    =/= wne 2652   A.wral 2807   {crab 2811   _Vcvv 3109   (/)c0 3793   {cpr 4034   <.cop 4038   class class class wbr 4456    |-> cmpt 4515   ran crn 5009   ` cfv 5594  (class class class)co 6296    |-> cmpt2 6298   1stc1st 6797   2ndc2nd 6798   0cc0 9509   1c1 9510    + caddc 9512    < clt 9645    - cmin 9824   NNcn 10556   NN0cn0 10816  ..^cfzo 11821   #chash 12408  Word cword 12538   USGrph cusg 24457   Walks cwalk 24625   WWalks cwwlk 24804   WWalksN cwwlkn 24805   RegGrph crgra 25049   RegUSGrph crusgra 25050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-2o 7149  df-oadd 7152  df-er 7329  df-map 7440  df-pm 7441  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-card 8337  df-cda 8565  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-2 10615  df-n0 10817  df-z 10886  df-uz 11107  df-xadd 11344  df-fz 11698  df-fzo 11822  df-hash 12409  df-word 12546  df-usgra 24460  df-wlk 24635  df-wwlk 24806  df-wwlkn 24807  df-vdgr 25021  df-rgra 25051  df-rusgra 25052
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator