MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem8 Structured version   Unicode version

Theorem ruclem8 14054
Description: Lemma for ruc 14060. The intervals of the  G sequence are all nonempty. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1  |-  ( ph  ->  F : NN --> RR )
ruc.2  |-  ( ph  ->  D  =  ( x  e.  ( RR  X.  RR ) ,  y  e.  RR  |->  [_ ( ( ( 1st `  x )  +  ( 2nd `  x
) )  /  2
)  /  m ]_ if ( m  <  y ,  <. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. ) ) )
ruc.4  |-  C  =  ( { <. 0 ,  <. 0 ,  1
>. >. }  u.  F
)
ruc.5  |-  G  =  seq 0 ( D ,  C )
Assertion
Ref Expression
ruclem8  |-  ( (
ph  /\  N  e.  NN0 )  ->  ( 1st `  ( G `  N
) )  <  ( 2nd `  ( G `  N ) ) )
Distinct variable groups:    x, m, y, F    m, G, x, y    m, N, x, y
Allowed substitution hints:    ph( x, y, m)    C( x, y, m)    D( x, y, m)

Proof of Theorem ruclem8
Dummy variables  n  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5848 . . . . . 6  |-  ( k  =  0  ->  ( G `  k )  =  ( G ` 
0 ) )
21fveq2d 5852 . . . . 5  |-  ( k  =  0  ->  ( 1st `  ( G `  k ) )  =  ( 1st `  ( G `  0 )
) )
31fveq2d 5852 . . . . 5  |-  ( k  =  0  ->  ( 2nd `  ( G `  k ) )  =  ( 2nd `  ( G `  0 )
) )
42, 3breq12d 4452 . . . 4  |-  ( k  =  0  ->  (
( 1st `  ( G `  k )
)  <  ( 2nd `  ( G `  k
) )  <->  ( 1st `  ( G `  0
) )  <  ( 2nd `  ( G ` 
0 ) ) ) )
54imbi2d 314 . . 3  |-  ( k  =  0  ->  (
( ph  ->  ( 1st `  ( G `  k
) )  <  ( 2nd `  ( G `  k ) ) )  <-> 
( ph  ->  ( 1st `  ( G `  0
) )  <  ( 2nd `  ( G ` 
0 ) ) ) ) )
6 fveq2 5848 . . . . . 6  |-  ( k  =  n  ->  ( G `  k )  =  ( G `  n ) )
76fveq2d 5852 . . . . 5  |-  ( k  =  n  ->  ( 1st `  ( G `  k ) )  =  ( 1st `  ( G `  n )
) )
86fveq2d 5852 . . . . 5  |-  ( k  =  n  ->  ( 2nd `  ( G `  k ) )  =  ( 2nd `  ( G `  n )
) )
97, 8breq12d 4452 . . . 4  |-  ( k  =  n  ->  (
( 1st `  ( G `  k )
)  <  ( 2nd `  ( G `  k
) )  <->  ( 1st `  ( G `  n
) )  <  ( 2nd `  ( G `  n ) ) ) )
109imbi2d 314 . . 3  |-  ( k  =  n  ->  (
( ph  ->  ( 1st `  ( G `  k
) )  <  ( 2nd `  ( G `  k ) ) )  <-> 
( ph  ->  ( 1st `  ( G `  n
) )  <  ( 2nd `  ( G `  n ) ) ) ) )
11 fveq2 5848 . . . . . 6  |-  ( k  =  ( n  + 
1 )  ->  ( G `  k )  =  ( G `  ( n  +  1
) ) )
1211fveq2d 5852 . . . . 5  |-  ( k  =  ( n  + 
1 )  ->  ( 1st `  ( G `  k ) )  =  ( 1st `  ( G `  ( n  +  1 ) ) ) )
1311fveq2d 5852 . . . . 5  |-  ( k  =  ( n  + 
1 )  ->  ( 2nd `  ( G `  k ) )  =  ( 2nd `  ( G `  ( n  +  1 ) ) ) )
1412, 13breq12d 4452 . . . 4  |-  ( k  =  ( n  + 
1 )  ->  (
( 1st `  ( G `  k )
)  <  ( 2nd `  ( G `  k
) )  <->  ( 1st `  ( G `  (
n  +  1 ) ) )  <  ( 2nd `  ( G `  ( n  +  1
) ) ) ) )
1514imbi2d 314 . . 3  |-  ( k  =  ( n  + 
1 )  ->  (
( ph  ->  ( 1st `  ( G `  k
) )  <  ( 2nd `  ( G `  k ) ) )  <-> 
( ph  ->  ( 1st `  ( G `  (
n  +  1 ) ) )  <  ( 2nd `  ( G `  ( n  +  1
) ) ) ) ) )
16 fveq2 5848 . . . . . 6  |-  ( k  =  N  ->  ( G `  k )  =  ( G `  N ) )
1716fveq2d 5852 . . . . 5  |-  ( k  =  N  ->  ( 1st `  ( G `  k ) )  =  ( 1st `  ( G `  N )
) )
1816fveq2d 5852 . . . . 5  |-  ( k  =  N  ->  ( 2nd `  ( G `  k ) )  =  ( 2nd `  ( G `  N )
) )
1917, 18breq12d 4452 . . . 4  |-  ( k  =  N  ->  (
( 1st `  ( G `  k )
)  <  ( 2nd `  ( G `  k
) )  <->  ( 1st `  ( G `  N
) )  <  ( 2nd `  ( G `  N ) ) ) )
2019imbi2d 314 . . 3  |-  ( k  =  N  ->  (
( ph  ->  ( 1st `  ( G `  k
) )  <  ( 2nd `  ( G `  k ) ) )  <-> 
( ph  ->  ( 1st `  ( G `  N
) )  <  ( 2nd `  ( G `  N ) ) ) ) )
21 0lt1 10071 . . . . 5  |-  0  <  1
2221a1i 11 . . . 4  |-  ( ph  ->  0  <  1 )
23 ruc.1 . . . . . . 7  |-  ( ph  ->  F : NN --> RR )
24 ruc.2 . . . . . . 7  |-  ( ph  ->  D  =  ( x  e.  ( RR  X.  RR ) ,  y  e.  RR  |->  [_ ( ( ( 1st `  x )  +  ( 2nd `  x
) )  /  2
)  /  m ]_ if ( m  <  y ,  <. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. ) ) )
25 ruc.4 . . . . . . 7  |-  C  =  ( { <. 0 ,  <. 0 ,  1
>. >. }  u.  F
)
26 ruc.5 . . . . . . 7  |-  G  =  seq 0 ( D ,  C )
2723, 24, 25, 26ruclem4 14051 . . . . . 6  |-  ( ph  ->  ( G `  0
)  =  <. 0 ,  1 >. )
2827fveq2d 5852 . . . . 5  |-  ( ph  ->  ( 1st `  ( G `  0 )
)  =  ( 1st `  <. 0 ,  1
>. ) )
29 c0ex 9579 . . . . . 6  |-  0  e.  _V
30 1ex 9580 . . . . . 6  |-  1  e.  _V
3129, 30op1st 6781 . . . . 5  |-  ( 1st `  <. 0 ,  1
>. )  =  0
3228, 31syl6eq 2511 . . . 4  |-  ( ph  ->  ( 1st `  ( G `  0 )
)  =  0 )
3327fveq2d 5852 . . . . 5  |-  ( ph  ->  ( 2nd `  ( G `  0 )
)  =  ( 2nd `  <. 0 ,  1
>. ) )
3429, 30op2nd 6782 . . . . 5  |-  ( 2nd `  <. 0 ,  1
>. )  =  1
3533, 34syl6eq 2511 . . . 4  |-  ( ph  ->  ( 2nd `  ( G `  0 )
)  =  1 )
3622, 32, 353brtr4d 4469 . . 3  |-  ( ph  ->  ( 1st `  ( G `  0 )
)  <  ( 2nd `  ( G `  0
) ) )
3723adantr 463 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  NN0  /\  ( 1st `  ( G `  n
) )  <  ( 2nd `  ( G `  n ) ) ) )  ->  F : NN
--> RR )
3824adantr 463 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  NN0  /\  ( 1st `  ( G `  n
) )  <  ( 2nd `  ( G `  n ) ) ) )  ->  D  =  ( x  e.  ( RR  X.  RR ) ,  y  e.  RR  |->  [_ ( ( ( 1st `  x )  +  ( 2nd `  x ) )  /  2 )  /  m ]_ if ( m  <  y , 
<. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. ) ) )
3923, 24, 25, 26ruclem6 14052 . . . . . . . . . . . 12  |-  ( ph  ->  G : NN0 --> ( RR 
X.  RR ) )
4039ffvelrnda 6007 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( G `  n )  e.  ( RR  X.  RR ) )
4140adantrr 714 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  NN0  /\  ( 1st `  ( G `  n
) )  <  ( 2nd `  ( G `  n ) ) ) )  ->  ( G `  n )  e.  ( RR  X.  RR ) )
42 xp1st 6803 . . . . . . . . . 10  |-  ( ( G `  n )  e.  ( RR  X.  RR )  ->  ( 1st `  ( G `  n
) )  e.  RR )
4341, 42syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  NN0  /\  ( 1st `  ( G `  n
) )  <  ( 2nd `  ( G `  n ) ) ) )  ->  ( 1st `  ( G `  n
) )  e.  RR )
44 xp2nd 6804 . . . . . . . . . 10  |-  ( ( G `  n )  e.  ( RR  X.  RR )  ->  ( 2nd `  ( G `  n
) )  e.  RR )
4541, 44syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  NN0  /\  ( 1st `  ( G `  n
) )  <  ( 2nd `  ( G `  n ) ) ) )  ->  ( 2nd `  ( G `  n
) )  e.  RR )
46 nn0p1nn 10831 . . . . . . . . . . 11  |-  ( n  e.  NN0  ->  ( n  +  1 )  e.  NN )
47 ffvelrn 6005 . . . . . . . . . . 11  |-  ( ( F : NN --> RR  /\  ( n  +  1
)  e.  NN )  ->  ( F `  ( n  +  1
) )  e.  RR )
4823, 46, 47syl2an 475 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( F `  ( n  +  1 ) )  e.  RR )
4948adantrr 714 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  NN0  /\  ( 1st `  ( G `  n
) )  <  ( 2nd `  ( G `  n ) ) ) )  ->  ( F `  ( n  +  1 ) )  e.  RR )
50 eqid 2454 . . . . . . . . 9  |-  ( 1st `  ( <. ( 1st `  ( G `  n )
) ,  ( 2nd `  ( G `  n
) ) >. D ( F `  ( n  +  1 ) ) ) )  =  ( 1st `  ( <.
( 1st `  ( G `  n )
) ,  ( 2nd `  ( G `  n
) ) >. D ( F `  ( n  +  1 ) ) ) )
51 eqid 2454 . . . . . . . . 9  |-  ( 2nd `  ( <. ( 1st `  ( G `  n )
) ,  ( 2nd `  ( G `  n
) ) >. D ( F `  ( n  +  1 ) ) ) )  =  ( 2nd `  ( <.
( 1st `  ( G `  n )
) ,  ( 2nd `  ( G `  n
) ) >. D ( F `  ( n  +  1 ) ) ) )
52 simprr 755 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  NN0  /\  ( 1st `  ( G `  n
) )  <  ( 2nd `  ( G `  n ) ) ) )  ->  ( 1st `  ( G `  n
) )  <  ( 2nd `  ( G `  n ) ) )
5337, 38, 43, 45, 49, 50, 51, 52ruclem2 14049 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  NN0  /\  ( 1st `  ( G `  n
) )  <  ( 2nd `  ( G `  n ) ) ) )  ->  ( ( 1st `  ( G `  n ) )  <_ 
( 1st `  ( <. ( 1st `  ( G `  n )
) ,  ( 2nd `  ( G `  n
) ) >. D ( F `  ( n  +  1 ) ) ) )  /\  ( 1st `  ( <. ( 1st `  ( G `  n ) ) ,  ( 2nd `  ( G `  n )
) >. D ( F `
 ( n  + 
1 ) ) ) )  <  ( 2nd `  ( <. ( 1st `  ( G `  n )
) ,  ( 2nd `  ( G `  n
) ) >. D ( F `  ( n  +  1 ) ) ) )  /\  ( 2nd `  ( <. ( 1st `  ( G `  n ) ) ,  ( 2nd `  ( G `  n )
) >. D ( F `
 ( n  + 
1 ) ) ) )  <_  ( 2nd `  ( G `  n
) ) ) )
5453simp2d 1007 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  NN0  /\  ( 1st `  ( G `  n
) )  <  ( 2nd `  ( G `  n ) ) ) )  ->  ( 1st `  ( <. ( 1st `  ( G `  n )
) ,  ( 2nd `  ( G `  n
) ) >. D ( F `  ( n  +  1 ) ) ) )  <  ( 2nd `  ( <. ( 1st `  ( G `  n ) ) ,  ( 2nd `  ( G `  n )
) >. D ( F `
 ( n  + 
1 ) ) ) ) )
5523, 24, 25, 26ruclem7 14053 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( G `  ( n  +  1 ) )  =  ( ( G `  n
) D ( F `
 ( n  + 
1 ) ) ) )
5655adantrr 714 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  NN0  /\  ( 1st `  ( G `  n
) )  <  ( 2nd `  ( G `  n ) ) ) )  ->  ( G `  ( n  +  1 ) )  =  ( ( G `  n
) D ( F `
 ( n  + 
1 ) ) ) )
57 1st2nd2 6810 . . . . . . . . . . 11  |-  ( ( G `  n )  e.  ( RR  X.  RR )  ->  ( G `
 n )  = 
<. ( 1st `  ( G `  n )
) ,  ( 2nd `  ( G `  n
) ) >. )
5841, 57syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  NN0  /\  ( 1st `  ( G `  n
) )  <  ( 2nd `  ( G `  n ) ) ) )  ->  ( G `  n )  =  <. ( 1st `  ( G `
 n ) ) ,  ( 2nd `  ( G `  n )
) >. )
5958oveq1d 6285 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  NN0  /\  ( 1st `  ( G `  n
) )  <  ( 2nd `  ( G `  n ) ) ) )  ->  ( ( G `  n ) D ( F `  ( n  +  1
) ) )  =  ( <. ( 1st `  ( G `  n )
) ,  ( 2nd `  ( G `  n
) ) >. D ( F `  ( n  +  1 ) ) ) )
6056, 59eqtrd 2495 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  NN0  /\  ( 1st `  ( G `  n
) )  <  ( 2nd `  ( G `  n ) ) ) )  ->  ( G `  ( n  +  1 ) )  =  (
<. ( 1st `  ( G `  n )
) ,  ( 2nd `  ( G `  n
) ) >. D ( F `  ( n  +  1 ) ) ) )
6160fveq2d 5852 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  NN0  /\  ( 1st `  ( G `  n
) )  <  ( 2nd `  ( G `  n ) ) ) )  ->  ( 1st `  ( G `  (
n  +  1 ) ) )  =  ( 1st `  ( <.
( 1st `  ( G `  n )
) ,  ( 2nd `  ( G `  n
) ) >. D ( F `  ( n  +  1 ) ) ) ) )
6260fveq2d 5852 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  NN0  /\  ( 1st `  ( G `  n
) )  <  ( 2nd `  ( G `  n ) ) ) )  ->  ( 2nd `  ( G `  (
n  +  1 ) ) )  =  ( 2nd `  ( <.
( 1st `  ( G `  n )
) ,  ( 2nd `  ( G `  n
) ) >. D ( F `  ( n  +  1 ) ) ) ) )
6354, 61, 623brtr4d 4469 . . . . . 6  |-  ( (
ph  /\  ( n  e.  NN0  /\  ( 1st `  ( G `  n
) )  <  ( 2nd `  ( G `  n ) ) ) )  ->  ( 1st `  ( G `  (
n  +  1 ) ) )  <  ( 2nd `  ( G `  ( n  +  1
) ) ) )
6463expr 613 . . . . 5  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( ( 1st `  ( G `  n ) )  < 
( 2nd `  ( G `  n )
)  ->  ( 1st `  ( G `  (
n  +  1 ) ) )  <  ( 2nd `  ( G `  ( n  +  1
) ) ) ) )
6564expcom 433 . . . 4  |-  ( n  e.  NN0  ->  ( ph  ->  ( ( 1st `  ( G `  n )
)  <  ( 2nd `  ( G `  n
) )  ->  ( 1st `  ( G `  ( n  +  1
) ) )  < 
( 2nd `  ( G `  ( n  +  1 ) ) ) ) ) )
6665a2d 26 . . 3  |-  ( n  e.  NN0  ->  ( (
ph  ->  ( 1st `  ( G `  n )
)  <  ( 2nd `  ( G `  n
) ) )  -> 
( ph  ->  ( 1st `  ( G `  (
n  +  1 ) ) )  <  ( 2nd `  ( G `  ( n  +  1
) ) ) ) ) )
675, 10, 15, 20, 36, 66nn0ind 10955 . 2  |-  ( N  e.  NN0  ->  ( ph  ->  ( 1st `  ( G `  N )
)  <  ( 2nd `  ( G `  N
) ) ) )
6867impcom 428 1  |-  ( (
ph  /\  N  e.  NN0 )  ->  ( 1st `  ( G `  N
) )  <  ( 2nd `  ( G `  N ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823   [_csb 3420    u. cun 3459   ifcif 3929   {csn 4016   <.cop 4022   class class class wbr 4439    X. cxp 4986   -->wf 5566   ` cfv 5570  (class class class)co 6270    |-> cmpt2 6272   1stc1st 6771   2ndc2nd 6772   RRcr 9480   0cc0 9481   1c1 9482    + caddc 9484    < clt 9617    <_ cle 9618    / cdiv 10202   NNcn 10531   2c2 10581   NN0cn0 10791    seqcseq 12089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-n0 10792  df-z 10861  df-uz 11083  df-fz 11676  df-seq 12090
This theorem is referenced by:  ruclem9  14055  ruclem10  14056  ruclem12  14058
  Copyright terms: Public domain W3C validator