MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem6 Structured version   Unicode version

Theorem ruclem6 13825
Description: Lemma for ruc 13833. Domain and range of the interval sequence. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1  |-  ( ph  ->  F : NN --> RR )
ruc.2  |-  ( ph  ->  D  =  ( x  e.  ( RR  X.  RR ) ,  y  e.  RR  |->  [_ ( ( ( 1st `  x )  +  ( 2nd `  x
) )  /  2
)  /  m ]_ if ( m  <  y ,  <. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. ) ) )
ruc.4  |-  C  =  ( { <. 0 ,  <. 0 ,  1
>. >. }  u.  F
)
ruc.5  |-  G  =  seq 0 ( D ,  C )
Assertion
Ref Expression
ruclem6  |-  ( ph  ->  G : NN0 --> ( RR 
X.  RR ) )
Distinct variable groups:    x, m, y, F    m, G, x, y
Allowed substitution hints:    ph( x, y, m)    C( x, y, m)    D( x, y, m)

Proof of Theorem ruclem6
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ruc.5 . . . . . . 7  |-  G  =  seq 0 ( D ,  C )
21fveq1i 5865 . . . . . 6  |-  ( G `
 0 )  =  (  seq 0 ( D ,  C ) `
 0 )
3 0z 10871 . . . . . . 7  |-  0  e.  ZZ
4 seq1 12084 . . . . . . 7  |-  ( 0  e.  ZZ  ->  (  seq 0 ( D ,  C ) `  0
)  =  ( C `
 0 ) )
53, 4ax-mp 5 . . . . . 6  |-  (  seq 0 ( D ,  C ) `  0
)  =  ( C `
 0 )
62, 5eqtri 2496 . . . . 5  |-  ( G `
 0 )  =  ( C `  0
)
7 ruc.1 . . . . . 6  |-  ( ph  ->  F : NN --> RR )
8 ruc.2 . . . . . 6  |-  ( ph  ->  D  =  ( x  e.  ( RR  X.  RR ) ,  y  e.  RR  |->  [_ ( ( ( 1st `  x )  +  ( 2nd `  x
) )  /  2
)  /  m ]_ if ( m  <  y ,  <. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. ) ) )
9 ruc.4 . . . . . 6  |-  C  =  ( { <. 0 ,  <. 0 ,  1
>. >. }  u.  F
)
107, 8, 9, 1ruclem4 13824 . . . . 5  |-  ( ph  ->  ( G `  0
)  =  <. 0 ,  1 >. )
116, 10syl5eqr 2522 . . . 4  |-  ( ph  ->  ( C `  0
)  =  <. 0 ,  1 >. )
12 0re 9592 . . . . 5  |-  0  e.  RR
13 1re 9591 . . . . 5  |-  1  e.  RR
14 opelxpi 5030 . . . . 5  |-  ( ( 0  e.  RR  /\  1  e.  RR )  -> 
<. 0 ,  1
>.  e.  ( RR  X.  RR ) )
1512, 13, 14mp2an 672 . . . 4  |-  <. 0 ,  1 >.  e.  ( RR  X.  RR )
1611, 15syl6eqel 2563 . . 3  |-  ( ph  ->  ( C `  0
)  e.  ( RR 
X.  RR ) )
17 1st2nd2 6818 . . . . . 6  |-  ( z  e.  ( RR  X.  RR )  ->  z  = 
<. ( 1st `  z
) ,  ( 2nd `  z ) >. )
1817ad2antrl 727 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( RR  X.  RR )  /\  w  e.  RR ) )  ->  z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
1918oveq1d 6297 . . . 4  |-  ( (
ph  /\  ( z  e.  ( RR  X.  RR )  /\  w  e.  RR ) )  ->  (
z D w )  =  ( <. ( 1st `  z ) ,  ( 2nd `  z
) >. D w ) )
207adantr 465 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ( RR  X.  RR )  /\  w  e.  RR ) )  ->  F : NN --> RR )
218adantr 465 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ( RR  X.  RR )  /\  w  e.  RR ) )  ->  D  =  ( x  e.  ( RR  X.  RR ) ,  y  e.  RR  |->  [_ ( ( ( 1st `  x )  +  ( 2nd `  x
) )  /  2
)  /  m ]_ if ( m  <  y ,  <. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. ) ) )
22 xp1st 6811 . . . . . . 7  |-  ( z  e.  ( RR  X.  RR )  ->  ( 1st `  z )  e.  RR )
2322ad2antrl 727 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ( RR  X.  RR )  /\  w  e.  RR ) )  ->  ( 1st `  z )  e.  RR )
24 xp2nd 6812 . . . . . . 7  |-  ( z  e.  ( RR  X.  RR )  ->  ( 2nd `  z )  e.  RR )
2524ad2antrl 727 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ( RR  X.  RR )  /\  w  e.  RR ) )  ->  ( 2nd `  z )  e.  RR )
26 simprr 756 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ( RR  X.  RR )  /\  w  e.  RR ) )  ->  w  e.  RR )
27 eqid 2467 . . . . . 6  |-  ( 1st `  ( <. ( 1st `  z
) ,  ( 2nd `  z ) >. D w ) )  =  ( 1st `  ( <.
( 1st `  z
) ,  ( 2nd `  z ) >. D w ) )
28 eqid 2467 . . . . . 6  |-  ( 2nd `  ( <. ( 1st `  z
) ,  ( 2nd `  z ) >. D w ) )  =  ( 2nd `  ( <.
( 1st `  z
) ,  ( 2nd `  z ) >. D w ) )
2920, 21, 23, 25, 26, 27, 28ruclem1 13821 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( RR  X.  RR )  /\  w  e.  RR ) )  ->  (
( <. ( 1st `  z
) ,  ( 2nd `  z ) >. D w )  e.  ( RR 
X.  RR )  /\  ( 1st `  ( <.
( 1st `  z
) ,  ( 2nd `  z ) >. D w ) )  =  if ( ( ( ( 1st `  z )  +  ( 2nd `  z
) )  /  2
)  <  w , 
( 1st `  z
) ,  ( ( ( ( ( 1st `  z )  +  ( 2nd `  z ) )  /  2 )  +  ( 2nd `  z
) )  /  2
) )  /\  ( 2nd `  ( <. ( 1st `  z ) ,  ( 2nd `  z
) >. D w ) )  =  if ( ( ( ( 1st `  z )  +  ( 2nd `  z ) )  /  2 )  <  w ,  ( ( ( 1st `  z
)  +  ( 2nd `  z ) )  / 
2 ) ,  ( 2nd `  z ) ) ) )
3029simp1d 1008 . . . 4  |-  ( (
ph  /\  ( z  e.  ( RR  X.  RR )  /\  w  e.  RR ) )  ->  ( <. ( 1st `  z
) ,  ( 2nd `  z ) >. D w )  e.  ( RR 
X.  RR ) )
3119, 30eqeltrd 2555 . . 3  |-  ( (
ph  /\  ( z  e.  ( RR  X.  RR )  /\  w  e.  RR ) )  ->  (
z D w )  e.  ( RR  X.  RR ) )
32 nn0uz 11112 . . 3  |-  NN0  =  ( ZZ>= `  0 )
33 0zd 10872 . . 3  |-  ( ph  ->  0  e.  ZZ )
34 0p1e1 10643 . . . . . . 7  |-  ( 0  +  1 )  =  1
3534fveq2i 5867 . . . . . 6  |-  ( ZZ>= `  ( 0  +  1 ) )  =  (
ZZ>= `  1 )
36 nnuz 11113 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
3735, 36eqtr4i 2499 . . . . 5  |-  ( ZZ>= `  ( 0  +  1 ) )  =  NN
3837eleq2i 2545 . . . 4  |-  ( z  e.  ( ZZ>= `  (
0  +  1 ) )  <->  z  e.  NN )
399equncomi 3650 . . . . . . . 8  |-  C  =  ( F  u.  { <. 0 ,  <. 0 ,  1 >. >. } )
4039fveq1i 5865 . . . . . . 7  |-  ( C `
 z )  =  ( ( F  u.  {
<. 0 ,  <. 0 ,  1 >. >. } ) `  z
)
41 nnne0 10564 . . . . . . . . 9  |-  ( z  e.  NN  ->  z  =/=  0 )
4241necomd 2738 . . . . . . . 8  |-  ( z  e.  NN  ->  0  =/=  z )
43 fvunsn 6091 . . . . . . . 8  |-  ( 0  =/=  z  ->  (
( F  u.  { <. 0 ,  <. 0 ,  1 >. >. } ) `
 z )  =  ( F `  z
) )
4442, 43syl 16 . . . . . . 7  |-  ( z  e.  NN  ->  (
( F  u.  { <. 0 ,  <. 0 ,  1 >. >. } ) `
 z )  =  ( F `  z
) )
4540, 44syl5eq 2520 . . . . . 6  |-  ( z  e.  NN  ->  ( C `  z )  =  ( F `  z ) )
4645adantl 466 . . . . 5  |-  ( (
ph  /\  z  e.  NN )  ->  ( C `
 z )  =  ( F `  z
) )
477ffvelrnda 6019 . . . . 5  |-  ( (
ph  /\  z  e.  NN )  ->  ( F `
 z )  e.  RR )
4846, 47eqeltrd 2555 . . . 4  |-  ( (
ph  /\  z  e.  NN )  ->  ( C `
 z )  e.  RR )
4938, 48sylan2b 475 . . 3  |-  ( (
ph  /\  z  e.  ( ZZ>= `  ( 0  +  1 ) ) )  ->  ( C `  z )  e.  RR )
5016, 31, 32, 33, 49seqf2 12090 . 2  |-  ( ph  ->  seq 0 ( D ,  C ) : NN0 --> ( RR  X.  RR ) )
511feq1i 5721 . 2  |-  ( G : NN0 --> ( RR 
X.  RR )  <->  seq 0
( D ,  C
) : NN0 --> ( RR 
X.  RR ) )
5250, 51sylibr 212 1  |-  ( ph  ->  G : NN0 --> ( RR 
X.  RR ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   [_csb 3435    u. cun 3474   ifcif 3939   {csn 4027   <.cop 4033   class class class wbr 4447    X. cxp 4997   -->wf 5582   ` cfv 5586  (class class class)co 6282    |-> cmpt2 6284   1stc1st 6779   2ndc2nd 6780   RRcr 9487   0cc0 9488   1c1 9489    + caddc 9491    < clt 9624    / cdiv 10202   NNcn 10532   2c2 10581   NN0cn0 10791   ZZcz 10860   ZZ>=cuz 11078    seqcseq 12071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-n0 10792  df-z 10861  df-uz 11079  df-fz 11669  df-seq 12072
This theorem is referenced by:  ruclem8  13827  ruclem9  13828  ruclem10  13829  ruclem11  13830  ruclem12  13831
  Copyright terms: Public domain W3C validator