MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem12 Structured version   Unicode version

Theorem ruclem12 13824
Description: Lemma for ruc 13826. The supremum of the increasing sequence  1st  o.  G is a real number that is not in the range of  F. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1  |-  ( ph  ->  F : NN --> RR )
ruc.2  |-  ( ph  ->  D  =  ( x  e.  ( RR  X.  RR ) ,  y  e.  RR  |->  [_ ( ( ( 1st `  x )  +  ( 2nd `  x
) )  /  2
)  /  m ]_ if ( m  <  y ,  <. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. ) ) )
ruc.4  |-  C  =  ( { <. 0 ,  <. 0 ,  1
>. >. }  u.  F
)
ruc.5  |-  G  =  seq 0 ( D ,  C )
ruc.6  |-  S  =  sup ( ran  ( 1st  o.  G ) ,  RR ,  <  )
Assertion
Ref Expression
ruclem12  |-  ( ph  ->  S  e.  ( RR 
\  ran  F )
)
Distinct variable groups:    x, m, y, F    m, G, x, y
Allowed substitution hints:    ph( x, y, m)    C( x, y, m)    D( x, y, m)    S( x, y, m)

Proof of Theorem ruclem12
Dummy variables  z  n  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ruc.6 . . 3  |-  S  =  sup ( ran  ( 1st  o.  G ) ,  RR ,  <  )
2 ruc.1 . . . . . 6  |-  ( ph  ->  F : NN --> RR )
3 ruc.2 . . . . . 6  |-  ( ph  ->  D  =  ( x  e.  ( RR  X.  RR ) ,  y  e.  RR  |->  [_ ( ( ( 1st `  x )  +  ( 2nd `  x
) )  /  2
)  /  m ]_ if ( m  <  y ,  <. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. ) ) )
4 ruc.4 . . . . . 6  |-  C  =  ( { <. 0 ,  <. 0 ,  1
>. >. }  u.  F
)
5 ruc.5 . . . . . 6  |-  G  =  seq 0 ( D ,  C )
62, 3, 4, 5ruclem11 13823 . . . . 5  |-  ( ph  ->  ( ran  ( 1st 
o.  G )  C_  RR  /\  ran  ( 1st 
o.  G )  =/=  (/)  /\  A. z  e. 
ran  ( 1st  o.  G ) z  <_ 
1 ) )
76simp1d 1003 . . . 4  |-  ( ph  ->  ran  ( 1st  o.  G )  C_  RR )
86simp2d 1004 . . . 4  |-  ( ph  ->  ran  ( 1st  o.  G )  =/=  (/) )
9 1re 9584 . . . . 5  |-  1  e.  RR
106simp3d 1005 . . . . 5  |-  ( ph  ->  A. z  e.  ran  ( 1st  o.  G ) z  <_  1 )
11 breq2 4444 . . . . . . 7  |-  ( n  =  1  ->  (
z  <_  n  <->  z  <_  1 ) )
1211ralbidv 2896 . . . . . 6  |-  ( n  =  1  ->  ( A. z  e.  ran  ( 1st  o.  G ) z  <_  n  <->  A. z  e.  ran  ( 1st  o.  G ) z  <_ 
1 ) )
1312rspcev 3207 . . . . 5  |-  ( ( 1  e.  RR  /\  A. z  e.  ran  ( 1st  o.  G ) z  <_  1 )  ->  E. n  e.  RR  A. z  e.  ran  ( 1st  o.  G ) z  <_  n )
149, 10, 13sylancr 663 . . . 4  |-  ( ph  ->  E. n  e.  RR  A. z  e.  ran  ( 1st  o.  G ) z  <_  n )
15 suprcl 10492 . . . 4  |-  ( ( ran  ( 1st  o.  G )  C_  RR  /\ 
ran  ( 1st  o.  G )  =/=  (/)  /\  E. n  e.  RR  A. z  e.  ran  ( 1st  o.  G ) z  <_  n )  ->  sup ( ran  ( 1st  o.  G ) ,  RR ,  <  )  e.  RR )
167, 8, 14, 15syl3anc 1223 . . 3  |-  ( ph  ->  sup ( ran  ( 1st  o.  G ) ,  RR ,  <  )  e.  RR )
171, 16syl5eqel 2552 . 2  |-  ( ph  ->  S  e.  RR )
182adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  F : NN
--> RR )
193adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  D  =  ( x  e.  ( RR  X.  RR ) ,  y  e.  RR  |->  [_ ( ( ( 1st `  x )  +  ( 2nd `  x ) )  /  2 )  /  m ]_ if ( m  <  y , 
<. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. ) ) )
202, 3, 4, 5ruclem6 13818 . . . . . . . . . . 11  |-  ( ph  ->  G : NN0 --> ( RR 
X.  RR ) )
21 nnm1nn0 10826 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (
n  -  1 )  e.  NN0 )
22 ffvelrn 6010 . . . . . . . . . . 11  |-  ( ( G : NN0 --> ( RR 
X.  RR )  /\  ( n  -  1
)  e.  NN0 )  ->  ( G `  (
n  -  1 ) )  e.  ( RR 
X.  RR ) )
2320, 21, 22syl2an 477 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( G `
 ( n  - 
1 ) )  e.  ( RR  X.  RR ) )
24 xp1st 6804 . . . . . . . . . 10  |-  ( ( G `  ( n  -  1 ) )  e.  ( RR  X.  RR )  ->  ( 1st `  ( G `  (
n  -  1 ) ) )  e.  RR )
2523, 24syl 16 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( G `  (
n  -  1 ) ) )  e.  RR )
26 xp2nd 6805 . . . . . . . . . 10  |-  ( ( G `  ( n  -  1 ) )  e.  ( RR  X.  RR )  ->  ( 2nd `  ( G `  (
n  -  1 ) ) )  e.  RR )
2723, 26syl 16 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  ( G `  (
n  -  1 ) ) )  e.  RR )
282ffvelrnda 6012 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n )  e.  RR )
29 eqid 2460 . . . . . . . . 9  |-  ( 1st `  ( <. ( 1st `  ( G `  ( n  -  1 ) ) ) ,  ( 2nd `  ( G `  (
n  -  1 ) ) ) >. D ( F `  n ) ) )  =  ( 1st `  ( <.
( 1st `  ( G `  ( n  -  1 ) ) ) ,  ( 2nd `  ( G `  (
n  -  1 ) ) ) >. D ( F `  n ) ) )
30 eqid 2460 . . . . . . . . 9  |-  ( 2nd `  ( <. ( 1st `  ( G `  ( n  -  1 ) ) ) ,  ( 2nd `  ( G `  (
n  -  1 ) ) ) >. D ( F `  n ) ) )  =  ( 2nd `  ( <.
( 1st `  ( G `  ( n  -  1 ) ) ) ,  ( 2nd `  ( G `  (
n  -  1 ) ) ) >. D ( F `  n ) ) )
312, 3, 4, 5ruclem8 13820 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  -  1 )  e. 
NN0 )  ->  ( 1st `  ( G `  ( n  -  1
) ) )  < 
( 2nd `  ( G `  ( n  -  1 ) ) ) )
3221, 31sylan2 474 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( G `  (
n  -  1 ) ) )  <  ( 2nd `  ( G `  ( n  -  1
) ) ) )
3318, 19, 25, 27, 28, 29, 30, 32ruclem3 13816 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( F `  n )  <  ( 1st `  ( <. ( 1st `  ( G `  ( n  -  1 ) ) ) ,  ( 2nd `  ( G `  (
n  -  1 ) ) ) >. D ( F `  n ) ) )  \/  ( 2nd `  ( <. ( 1st `  ( G `  ( n  -  1
) ) ) ,  ( 2nd `  ( G `  ( n  -  1 ) ) ) >. D ( F `
 n ) ) )  <  ( F `
 n ) ) )
342, 3, 4, 5ruclem7 13819 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( n  -  1 )  e. 
NN0 )  ->  ( G `  ( (
n  -  1 )  +  1 ) )  =  ( ( G `
 ( n  - 
1 ) ) D ( F `  (
( n  -  1 )  +  1 ) ) ) )
3521, 34sylan2 474 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( G `
 ( ( n  -  1 )  +  1 ) )  =  ( ( G `  ( n  -  1
) ) D ( F `  ( ( n  -  1 )  +  1 ) ) ) )
36 nncn 10533 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  n  e.  CC )
3736adantl 466 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  NN )  ->  n  e.  CC )
38 ax-1cn 9539 . . . . . . . . . . . . . 14  |-  1  e.  CC
39 npcan 9818 . . . . . . . . . . . . . 14  |-  ( ( n  e.  CC  /\  1  e.  CC )  ->  ( ( n  - 
1 )  +  1 )  =  n )
4037, 38, 39sylancl 662 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( n  -  1 )  +  1 )  =  n )
4140fveq2d 5861 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( G `
 ( ( n  -  1 )  +  1 ) )  =  ( G `  n
) )
42 1st2nd2 6811 . . . . . . . . . . . . . 14  |-  ( ( G `  ( n  -  1 ) )  e.  ( RR  X.  RR )  ->  ( G `
 ( n  - 
1 ) )  = 
<. ( 1st `  ( G `  ( n  -  1 ) ) ) ,  ( 2nd `  ( G `  (
n  -  1 ) ) ) >. )
4323, 42syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  ( G `
 ( n  - 
1 ) )  = 
<. ( 1st `  ( G `  ( n  -  1 ) ) ) ,  ( 2nd `  ( G `  (
n  -  1 ) ) ) >. )
4440fveq2d 5861 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 ( ( n  -  1 )  +  1 ) )  =  ( F `  n
) )
4543, 44oveq12d 6293 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( G `  ( n  -  1 ) ) D ( F `  ( ( n  - 
1 )  +  1 ) ) )  =  ( <. ( 1st `  ( G `  ( n  -  1 ) ) ) ,  ( 2nd `  ( G `  (
n  -  1 ) ) ) >. D ( F `  n ) ) )
4635, 41, 453eqtr3d 2509 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( G `
 n )  =  ( <. ( 1st `  ( G `  ( n  -  1 ) ) ) ,  ( 2nd `  ( G `  (
n  -  1 ) ) ) >. D ( F `  n ) ) )
4746fveq2d 5861 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( G `  n
) )  =  ( 1st `  ( <.
( 1st `  ( G `  ( n  -  1 ) ) ) ,  ( 2nd `  ( G `  (
n  -  1 ) ) ) >. D ( F `  n ) ) ) )
4847breq2d 4452 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( F `  n )  <  ( 1st `  ( G `  n )
)  <->  ( F `  n )  <  ( 1st `  ( <. ( 1st `  ( G `  ( n  -  1
) ) ) ,  ( 2nd `  ( G `  ( n  -  1 ) ) ) >. D ( F `
 n ) ) ) ) )
4946fveq2d 5861 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  ( G `  n
) )  =  ( 2nd `  ( <.
( 1st `  ( G `  ( n  -  1 ) ) ) ,  ( 2nd `  ( G `  (
n  -  1 ) ) ) >. D ( F `  n ) ) ) )
5049breq1d 4450 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 2nd `  ( G `
 n ) )  <  ( F `  n )  <->  ( 2nd `  ( <. ( 1st `  ( G `  ( n  -  1 ) ) ) ,  ( 2nd `  ( G `  (
n  -  1 ) ) ) >. D ( F `  n ) ) )  <  ( F `  n )
) )
5148, 50orbi12d 709 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( F `  n
)  <  ( 1st `  ( G `  n
) )  \/  ( 2nd `  ( G `  n ) )  < 
( F `  n
) )  <->  ( ( F `  n )  <  ( 1st `  ( <. ( 1st `  ( G `  ( n  -  1 ) ) ) ,  ( 2nd `  ( G `  (
n  -  1 ) ) ) >. D ( F `  n ) ) )  \/  ( 2nd `  ( <. ( 1st `  ( G `  ( n  -  1
) ) ) ,  ( 2nd `  ( G `  ( n  -  1 ) ) ) >. D ( F `
 n ) ) )  <  ( F `
 n ) ) ) )
5233, 51mpbird 232 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( F `  n )  <  ( 1st `  ( G `  n )
)  \/  ( 2nd `  ( G `  n
) )  <  ( F `  n )
) )
537adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ran  ( 1st  o.  G )  C_  RR )
548adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ran  ( 1st  o.  G )  =/=  (/) )
5514adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  E. n  e.  RR  A. z  e. 
ran  ( 1st  o.  G ) z  <_  n )
56 nnnn0 10791 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  n  e.  NN0 )
57 fvco3 5935 . . . . . . . . . . . . 13  |-  ( ( G : NN0 --> ( RR 
X.  RR )  /\  n  e.  NN0 )  -> 
( ( 1st  o.  G ) `  n
)  =  ( 1st `  ( G `  n
) ) )
5820, 56, 57syl2an 477 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1st  o.  G ) `
 n )  =  ( 1st `  ( G `  n )
) )
5920adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  NN )  ->  G : NN0
--> ( RR  X.  RR ) )
60 1stcof 6802 . . . . . . . . . . . . . 14  |-  ( G : NN0 --> ( RR 
X.  RR )  -> 
( 1st  o.  G
) : NN0 --> RR )
61 ffn 5722 . . . . . . . . . . . . . 14  |-  ( ( 1st  o.  G ) : NN0 --> RR  ->  ( 1st  o.  G )  Fn  NN0 )
6259, 60, 613syl 20 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st 
o.  G )  Fn 
NN0 )
6356adantl 466 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  n  e. 
NN0 )
64 fnfvelrn 6009 . . . . . . . . . . . . 13  |-  ( ( ( 1st  o.  G
)  Fn  NN0  /\  n  e.  NN0 )  -> 
( ( 1st  o.  G ) `  n
)  e.  ran  ( 1st  o.  G ) )
6562, 63, 64syl2anc 661 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1st  o.  G ) `
 n )  e. 
ran  ( 1st  o.  G ) )
6658, 65eqeltrrd 2549 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( G `  n
) )  e.  ran  ( 1st  o.  G ) )
67 suprub 10493 . . . . . . . . . . 11  |-  ( ( ( ran  ( 1st 
o.  G )  C_  RR  /\  ran  ( 1st 
o.  G )  =/=  (/)  /\  E. n  e.  RR  A. z  e. 
ran  ( 1st  o.  G ) z  <_  n )  /\  ( 1st `  ( G `  n ) )  e. 
ran  ( 1st  o.  G ) )  -> 
( 1st `  ( G `  n )
)  <_  sup ( ran  ( 1st  o.  G
) ,  RR ,  <  ) )
6853, 54, 55, 66, 67syl31anc 1226 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( G `  n
) )  <_  sup ( ran  ( 1st  o.  G ) ,  RR ,  <  ) )
6968, 1syl6breqr 4480 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( G `  n
) )  <_  S
)
70 ffvelrn 6010 . . . . . . . . . . . 12  |-  ( ( G : NN0 --> ( RR 
X.  RR )  /\  n  e.  NN0 )  -> 
( G `  n
)  e.  ( RR 
X.  RR ) )
7120, 56, 70syl2an 477 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( G `
 n )  e.  ( RR  X.  RR ) )
72 xp1st 6804 . . . . . . . . . . 11  |-  ( ( G `  n )  e.  ( RR  X.  RR )  ->  ( 1st `  ( G `  n
) )  e.  RR )
7371, 72syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( G `  n
) )  e.  RR )
7417adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  S  e.  RR )
75 ltletr 9665 . . . . . . . . . 10  |-  ( ( ( F `  n
)  e.  RR  /\  ( 1st `  ( G `
 n ) )  e.  RR  /\  S  e.  RR )  ->  (
( ( F `  n )  <  ( 1st `  ( G `  n ) )  /\  ( 1st `  ( G `
 n ) )  <_  S )  -> 
( F `  n
)  <  S )
)
7628, 73, 74, 75syl3anc 1223 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( F `  n
)  <  ( 1st `  ( G `  n
) )  /\  ( 1st `  ( G `  n ) )  <_  S )  ->  ( F `  n )  <  S ) )
7769, 76mpan2d 674 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( F `  n )  <  ( 1st `  ( G `  n )
)  ->  ( F `  n )  <  S
) )
78 fvco3 5935 . . . . . . . . . . . . . . 15  |-  ( ( G : NN0 --> ( RR 
X.  RR )  /\  k  e.  NN0 )  -> 
( ( 1st  o.  G ) `  k
)  =  ( 1st `  ( G `  k
) ) )
7959, 78sylan 471 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN0 )  ->  (
( 1st  o.  G
) `  k )  =  ( 1st `  ( G `  k )
) )
8059ffvelrnda 6012 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN0 )  ->  ( G `  k )  e.  ( RR  X.  RR ) )
81 xp1st 6804 . . . . . . . . . . . . . . . 16  |-  ( ( G `  k )  e.  ( RR  X.  RR )  ->  ( 1st `  ( G `  k
) )  e.  RR )
8280, 81syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN0 )  ->  ( 1st `  ( G `  k ) )  e.  RR )
83 xp2nd 6805 . . . . . . . . . . . . . . . . 17  |-  ( ( G `  n )  e.  ( RR  X.  RR )  ->  ( 2nd `  ( G `  n
) )  e.  RR )
8471, 83syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  ( G `  n
) )  e.  RR )
8584adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN0 )  ->  ( 2nd `  ( G `  n ) )  e.  RR )
8618adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN0 )  ->  F : NN --> RR )
8719adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN0 )  ->  D  =  ( x  e.  ( RR  X.  RR ) ,  y  e.  RR  |->  [_ ( ( ( 1st `  x )  +  ( 2nd `  x
) )  /  2
)  /  m ]_ if ( m  <  y ,  <. ( 1st `  x
) ,  m >. , 
<. ( ( m  +  ( 2nd `  x ) )  /  2 ) ,  ( 2nd `  x
) >. ) ) )
88 simpr 461 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN0 )  ->  k  e.  NN0 )
8963adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN0 )  ->  n  e.  NN0 )
9086, 87, 4, 5, 88, 89ruclem10 13822 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN0 )  ->  ( 1st `  ( G `  k ) )  < 
( 2nd `  ( G `  n )
) )
9182, 85, 90ltled 9721 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN0 )  ->  ( 1st `  ( G `  k ) )  <_ 
( 2nd `  ( G `  n )
) )
9279, 91eqbrtrd 4460 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  NN0 )  ->  (
( 1st  o.  G
) `  k )  <_  ( 2nd `  ( G `  n )
) )
9392ralrimiva 2871 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  A. k  e.  NN0  ( ( 1st 
o.  G ) `  k )  <_  ( 2nd `  ( G `  n ) ) )
94 breq1 4443 . . . . . . . . . . . . . 14  |-  ( z  =  ( ( 1st 
o.  G ) `  k )  ->  (
z  <_  ( 2nd `  ( G `  n
) )  <->  ( ( 1st  o.  G ) `  k )  <_  ( 2nd `  ( G `  n ) ) ) )
9594ralrn 6015 . . . . . . . . . . . . 13  |-  ( ( 1st  o.  G )  Fn  NN0  ->  ( A. z  e.  ran  ( 1st 
o.  G ) z  <_  ( 2nd `  ( G `  n )
)  <->  A. k  e.  NN0  ( ( 1st  o.  G ) `  k
)  <_  ( 2nd `  ( G `  n
) ) ) )
9662, 95syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( A. z  e.  ran  ( 1st 
o.  G ) z  <_  ( 2nd `  ( G `  n )
)  <->  A. k  e.  NN0  ( ( 1st  o.  G ) `  k
)  <_  ( 2nd `  ( G `  n
) ) ) )
9793, 96mpbird 232 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  A. z  e.  ran  ( 1st  o.  G ) z  <_ 
( 2nd `  ( G `  n )
) )
98 suprleub 10496 . . . . . . . . . . . 12  |-  ( ( ( ran  ( 1st 
o.  G )  C_  RR  /\  ran  ( 1st 
o.  G )  =/=  (/)  /\  E. n  e.  RR  A. z  e. 
ran  ( 1st  o.  G ) z  <_  n )  /\  ( 2nd `  ( G `  n ) )  e.  RR )  ->  ( sup ( ran  ( 1st 
o.  G ) ,  RR ,  <  )  <_  ( 2nd `  ( G `  n )
)  <->  A. z  e.  ran  ( 1st  o.  G ) z  <_  ( 2nd `  ( G `  n
) ) ) )
9953, 54, 55, 84, 98syl31anc 1226 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( sup ( ran  ( 1st 
o.  G ) ,  RR ,  <  )  <_  ( 2nd `  ( G `  n )
)  <->  A. z  e.  ran  ( 1st  o.  G ) z  <_  ( 2nd `  ( G `  n
) ) ) )
10097, 99mpbird 232 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  sup ( ran  ( 1st  o.  G
) ,  RR ,  <  )  <_  ( 2nd `  ( G `  n
) ) )
1011, 100syl5eqbr 4473 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  S  <_ 
( 2nd `  ( G `  n )
) )
102 lelttr 9664 . . . . . . . . . 10  |-  ( ( S  e.  RR  /\  ( 2nd `  ( G `
 n ) )  e.  RR  /\  ( F `  n )  e.  RR )  ->  (
( S  <_  ( 2nd `  ( G `  n ) )  /\  ( 2nd `  ( G `
 n ) )  <  ( F `  n ) )  ->  S  <  ( F `  n ) ) )
10374, 84, 28, 102syl3anc 1223 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( S  <_  ( 2nd `  ( G `  n
) )  /\  ( 2nd `  ( G `  n ) )  < 
( F `  n
) )  ->  S  <  ( F `  n
) ) )
104101, 103mpand 675 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 2nd `  ( G `
 n ) )  <  ( F `  n )  ->  S  <  ( F `  n
) ) )
10577, 104orim12d 835 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( F `  n
)  <  ( 1st `  ( G `  n
) )  \/  ( 2nd `  ( G `  n ) )  < 
( F `  n
) )  ->  (
( F `  n
)  <  S  \/  S  <  ( F `  n ) ) ) )
10652, 105mpd 15 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( F `  n )  <  S  \/  S  <  ( F `  n
) ) )
10728, 74lttri2d 9712 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( F `  n )  =/=  S  <->  ( ( F `  n )  <  S  \/  S  < 
( F `  n
) ) ) )
108106, 107mpbird 232 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n )  =/= 
S )
109108neneqd 2662 . . . 4  |-  ( (
ph  /\  n  e.  NN )  ->  -.  ( F `  n )  =  S )
110109nrexdv 2913 . . 3  |-  ( ph  ->  -.  E. n  e.  NN  ( F `  n )  =  S )
111 risset 2980 . . . 4  |-  ( S  e.  ran  F  <->  E. z  e.  ran  F  z  =  S )
112 ffn 5722 . . . . 5  |-  ( F : NN --> RR  ->  F  Fn  NN )
113 eqeq1 2464 . . . . . 6  |-  ( z  =  ( F `  n )  ->  (
z  =  S  <->  ( F `  n )  =  S ) )
114113rexrn 6014 . . . . 5  |-  ( F  Fn  NN  ->  ( E. z  e.  ran  F  z  =  S  <->  E. n  e.  NN  ( F `  n )  =  S ) )
1152, 112, 1143syl 20 . . . 4  |-  ( ph  ->  ( E. z  e. 
ran  F  z  =  S 
<->  E. n  e.  NN  ( F `  n )  =  S ) )
116111, 115syl5bb 257 . . 3  |-  ( ph  ->  ( S  e.  ran  F  <->  E. n  e.  NN  ( F `  n )  =  S ) )
117110, 116mtbird 301 . 2  |-  ( ph  ->  -.  S  e.  ran  F )
11817, 117eldifd 3480 1  |-  ( ph  ->  S  e.  ( RR 
\  ran  F )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1374    e. wcel 1762    =/= wne 2655   A.wral 2807   E.wrex 2808   [_csb 3428    \ cdif 3466    u. cun 3467    C_ wss 3469   (/)c0 3778   ifcif 3932   {csn 4020   <.cop 4026   class class class wbr 4440    X. cxp 4990   ran crn 4993    o. ccom 4996    Fn wfn 5574   -->wf 5575   ` cfv 5579  (class class class)co 6275    |-> cmpt2 6277   1stc1st 6772   2ndc2nd 6773   supcsup 7889   CCcc 9479   RRcr 9480   0cc0 9481   1c1 9482    + caddc 9484    < clt 9617    <_ cle 9618    - cmin 9794    / cdiv 10195   NNcn 10525   2c2 10574   NN0cn0 10784    seqcseq 12063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-fal 1380  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-er 7301  df-en 7507  df-dom 7508  df-sdom 7509  df-sup 7890  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-n0 10785  df-z 10854  df-uz 11072  df-fz 11662  df-seq 12064
This theorem is referenced by:  ruclem13  13825
  Copyright terms: Public domain W3C validator