MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspcimdv Structured version   Unicode version

Theorem rspcimdv 3215
Description: Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
rspcimdv.1  |-  ( ph  ->  A  e.  B )
rspcimdv.2  |-  ( (
ph  /\  x  =  A )  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
rspcimdv  |-  ( ph  ->  ( A. x  e.  B  ps  ->  ch ) )
Distinct variable groups:    x, A    x, B    ph, x    ch, x
Allowed substitution hint:    ps( x)

Proof of Theorem rspcimdv
StepHypRef Expression
1 df-ral 2819 . 2  |-  ( A. x  e.  B  ps  <->  A. x ( x  e.  B  ->  ps )
)
2 rspcimdv.1 . . 3  |-  ( ph  ->  A  e.  B )
3 simpr 461 . . . . . . 7  |-  ( (
ph  /\  x  =  A )  ->  x  =  A )
43eleq1d 2536 . . . . . 6  |-  ( (
ph  /\  x  =  A )  ->  (
x  e.  B  <->  A  e.  B ) )
54biimprd 223 . . . . 5  |-  ( (
ph  /\  x  =  A )  ->  ( A  e.  B  ->  x  e.  B ) )
6 rspcimdv.2 . . . . 5  |-  ( (
ph  /\  x  =  A )  ->  ( ps  ->  ch ) )
75, 6imim12d 74 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  (
( x  e.  B  ->  ps )  ->  ( A  e.  B  ->  ch ) ) )
82, 7spcimdv 3195 . . 3  |-  ( ph  ->  ( A. x ( x  e.  B  ->  ps )  ->  ( A  e.  B  ->  ch ) ) )
92, 8mpid 41 . 2  |-  ( ph  ->  ( A. x ( x  e.  B  ->  ps )  ->  ch )
)
101, 9syl5bi 217 1  |-  ( ph  ->  ( A. x  e.  B  ps  ->  ch ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369   A.wal 1377    = wceq 1379    e. wcel 1767   A.wral 2814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ral 2819  df-v 3115
This theorem is referenced by:  rspcimedv  3216  rspcdv  3217  wrd2ind  12666  mreexd  14897  mreexexlemd  14899  catcocl  14940  catass  14941  moni  14992  subccocl  15072  funcco  15098  fullfo  15139  fthf1  15144  nati  15182  acsfiindd  15664  chpscmat  19138  sizeusglecusglem1  24188  friendshipgt3  24826  lmxrge0  27598  funressnfv  31708  snlindsntorlem  32170
  Copyright terms: Public domain W3C validator