MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspcedv Unicode version

Theorem rspcedv 3016
Description: Restricted existential specialization, using implicit substitution. (Contributed by FL, 17-Apr-2007.) (Revised by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
rspcdv.1  |-  ( ph  ->  A  e.  B )
rspcdv.2  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
rspcedv  |-  ( ph  ->  ( ch  ->  E. x  e.  B  ps )
)
Distinct variable groups:    x, A    x, B    ph, x    ch, x
Allowed substitution hint:    ps( x)

Proof of Theorem rspcedv
StepHypRef Expression
1 rspcdv.1 . 2  |-  ( ph  ->  A  e.  B )
2 rspcdv.2 . . 3  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<->  ch ) )
32biimprd 215 . 2  |-  ( (
ph  /\  x  =  A )  ->  ( ch  ->  ps ) )
41, 3rspcimedv 3014 1  |-  ( ph  ->  ( ch  ->  E. x  e.  B  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   E.wrex 2667
This theorem is referenced by:  gcdcllem1  12966  cusgrafilem2  21442  xrofsup  24079  rexzrexnn0  26754
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385
This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ral 2671  df-rex 2672  df-v 2918
  Copyright terms: Public domain W3C validator