Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrnmet Structured version   Unicode version

Theorem rrnmet 31620
Description: Euclidean space is a metric space. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.)
Hypothesis
Ref Expression
rrnval.1  |-  X  =  ( RR  ^m  I
)
Assertion
Ref Expression
rrnmet  |-  ( I  e.  Fin  ->  ( Rn `  I )  e.  ( Met `  X
) )

Proof of Theorem rrnmet
Dummy variables  k  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 457 . . . . . . 7  |-  ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  ->  I  e.  Fin )
2 simprl 758 . . . . . . . . . . . 12  |-  ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  ->  x  e.  X )
3 rrnval.1 . . . . . . . . . . . 12  |-  X  =  ( RR  ^m  I
)
42, 3syl6eleq 2502 . . . . . . . . . . 11  |-  ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  ->  x  e.  ( RR  ^m  I
) )
5 elmapi 7480 . . . . . . . . . . 11  |-  ( x  e.  ( RR  ^m  I )  ->  x : I --> RR )
64, 5syl 17 . . . . . . . . . 10  |-  ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  ->  x : I --> RR )
76ffvelrnda 6011 . . . . . . . . 9  |-  ( ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  /\  k  e.  I )  ->  (
x `  k )  e.  RR )
8 simprr 760 . . . . . . . . . . . 12  |-  ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  ->  y  e.  X )
98, 3syl6eleq 2502 . . . . . . . . . . 11  |-  ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  ->  y  e.  ( RR  ^m  I
) )
10 elmapi 7480 . . . . . . . . . . 11  |-  ( y  e.  ( RR  ^m  I )  ->  y : I --> RR )
119, 10syl 17 . . . . . . . . . 10  |-  ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  ->  y : I --> RR )
1211ffvelrnda 6011 . . . . . . . . 9  |-  ( ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  /\  k  e.  I )  ->  (
y `  k )  e.  RR )
137, 12resubcld 10030 . . . . . . . 8  |-  ( ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  /\  k  e.  I )  ->  (
( x `  k
)  -  ( y `
 k ) )  e.  RR )
1413resqcld 12382 . . . . . . 7  |-  ( ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  /\  k  e.  I )  ->  (
( ( x `  k )  -  (
y `  k )
) ^ 2 )  e.  RR )
151, 14fsumrecl 13707 . . . . . 6  |-  ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  ->  sum_ k  e.  I  ( (
( x `  k
)  -  ( y `
 k ) ) ^ 2 )  e.  RR )
1613sqge0d 12383 . . . . . . 7  |-  ( ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  /\  k  e.  I )  ->  0  <_  ( ( ( x `
 k )  -  ( y `  k
) ) ^ 2 ) )
171, 14, 16fsumge0 13762 . . . . . 6  |-  ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  ->  0  <_ 
sum_ k  e.  I 
( ( ( x `
 k )  -  ( y `  k
) ) ^ 2 ) )
1815, 17resqrtcld 13400 . . . . 5  |-  ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  ->  ( sqr `  sum_ k  e.  I 
( ( ( x `
 k )  -  ( y `  k
) ) ^ 2 ) )  e.  RR )
1918ralrimivva 2827 . . . 4  |-  ( I  e.  Fin  ->  A. x  e.  X  A. y  e.  X  ( sqr ` 
sum_ k  e.  I 
( ( ( x `
 k )  -  ( y `  k
) ) ^ 2 ) )  e.  RR )
20 eqid 2404 . . . . 5  |-  ( x  e.  X ,  y  e.  X  |->  ( sqr `  sum_ k  e.  I 
( ( ( x `
 k )  -  ( y `  k
) ) ^ 2 ) ) )  =  ( x  e.  X ,  y  e.  X  |->  ( sqr `  sum_ k  e.  I  (
( ( x `  k )  -  (
y `  k )
) ^ 2 ) ) )
2120fmpt2 6853 . . . 4  |-  ( A. x  e.  X  A. y  e.  X  ( sqr `  sum_ k  e.  I 
( ( ( x `
 k )  -  ( y `  k
) ) ^ 2 ) )  e.  RR  <->  ( x  e.  X , 
y  e.  X  |->  ( sqr `  sum_ k  e.  I  ( (
( x `  k
)  -  ( y `
 k ) ) ^ 2 ) ) ) : ( X  X.  X ) --> RR )
2219, 21sylib 198 . . 3  |-  ( I  e.  Fin  ->  (
x  e.  X , 
y  e.  X  |->  ( sqr `  sum_ k  e.  I  ( (
( x `  k
)  -  ( y `
 k ) ) ^ 2 ) ) ) : ( X  X.  X ) --> RR )
233rrnval 31618 . . . 4  |-  ( I  e.  Fin  ->  ( Rn `  I )  =  ( x  e.  X ,  y  e.  X  |->  ( sqr `  sum_ k  e.  I  (
( ( x `  k )  -  (
y `  k )
) ^ 2 ) ) ) )
2423feq1d 5702 . . 3  |-  ( I  e.  Fin  ->  (
( Rn `  I
) : ( X  X.  X ) --> RR  <->  ( x  e.  X , 
y  e.  X  |->  ( sqr `  sum_ k  e.  I  ( (
( x `  k
)  -  ( y `
 k ) ) ^ 2 ) ) ) : ( X  X.  X ) --> RR ) )
2522, 24mpbird 234 . 2  |-  ( I  e.  Fin  ->  ( Rn `  I ) : ( X  X.  X
) --> RR )
26 sqrt00 13248 . . . . . . . 8  |-  ( (
sum_ k  e.  I 
( ( ( x `
 k )  -  ( y `  k
) ) ^ 2 )  e.  RR  /\  0  <_  sum_ k  e.  I 
( ( ( x `
 k )  -  ( y `  k
) ) ^ 2 ) )  ->  (
( sqr `  sum_ k  e.  I  (
( ( x `  k )  -  (
y `  k )
) ^ 2 ) )  =  0  <->  sum_ k  e.  I  (
( ( x `  k )  -  (
y `  k )
) ^ 2 )  =  0 ) )
2715, 17, 26syl2anc 661 . . . . . . 7  |-  ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  ->  (
( sqr `  sum_ k  e.  I  (
( ( x `  k )  -  (
y `  k )
) ^ 2 ) )  =  0  <->  sum_ k  e.  I  (
( ( x `  k )  -  (
y `  k )
) ^ 2 )  =  0 ) )
281, 14, 16fsum00 13765 . . . . . . 7  |-  ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  ->  ( sum_ k  e.  I  ( ( ( x `  k )  -  (
y `  k )
) ^ 2 )  =  0  <->  A. k  e.  I  ( (
( x `  k
)  -  ( y `
 k ) ) ^ 2 )  =  0 ) )
2927, 28bitrd 255 . . . . . 6  |-  ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  ->  (
( sqr `  sum_ k  e.  I  (
( ( x `  k )  -  (
y `  k )
) ^ 2 ) )  =  0  <->  A. k  e.  I  (
( ( x `  k )  -  (
y `  k )
) ^ 2 )  =  0 ) )
3013recnd 9654 . . . . . . . . 9  |-  ( ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  /\  k  e.  I )  ->  (
( x `  k
)  -  ( y `
 k ) )  e.  CC )
31 sqeq0 12279 . . . . . . . . 9  |-  ( ( ( x `  k
)  -  ( y `
 k ) )  e.  CC  ->  (
( ( ( x `
 k )  -  ( y `  k
) ) ^ 2 )  =  0  <->  (
( x `  k
)  -  ( y `
 k ) )  =  0 ) )
3230, 31syl 17 . . . . . . . 8  |-  ( ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  /\  k  e.  I )  ->  (
( ( ( x `
 k )  -  ( y `  k
) ) ^ 2 )  =  0  <->  (
( x `  k
)  -  ( y `
 k ) )  =  0 ) )
337recnd 9654 . . . . . . . . 9  |-  ( ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  /\  k  e.  I )  ->  (
x `  k )  e.  CC )
3412recnd 9654 . . . . . . . . 9  |-  ( ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  /\  k  e.  I )  ->  (
y `  k )  e.  CC )
3533, 34subeq0ad 9979 . . . . . . . 8  |-  ( ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  /\  k  e.  I )  ->  (
( ( x `  k )  -  (
y `  k )
)  =  0  <->  (
x `  k )  =  ( y `  k ) ) )
3632, 35bitrd 255 . . . . . . 7  |-  ( ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  /\  k  e.  I )  ->  (
( ( ( x `
 k )  -  ( y `  k
) ) ^ 2 )  =  0  <->  (
x `  k )  =  ( y `  k ) ) )
3736ralbidva 2842 . . . . . 6  |-  ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  ->  ( A. k  e.  I 
( ( ( x `
 k )  -  ( y `  k
) ) ^ 2 )  =  0  <->  A. k  e.  I  (
x `  k )  =  ( y `  k ) ) )
3829, 37bitrd 255 . . . . 5  |-  ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  ->  (
( sqr `  sum_ k  e.  I  (
( ( x `  k )  -  (
y `  k )
) ^ 2 ) )  =  0  <->  A. k  e.  I  (
x `  k )  =  ( y `  k ) ) )
393rrnmval 31619 . . . . . . 7  |-  ( ( I  e.  Fin  /\  x  e.  X  /\  y  e.  X )  ->  ( x ( Rn
`  I ) y )  =  ( sqr `  sum_ k  e.  I 
( ( ( x `
 k )  -  ( y `  k
) ) ^ 2 ) ) )
40393expb 1200 . . . . . 6  |-  ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  ->  (
x ( Rn `  I ) y )  =  ( sqr `  sum_ k  e.  I  (
( ( x `  k )  -  (
y `  k )
) ^ 2 ) ) )
4140eqeq1d 2406 . . . . 5  |-  ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  ->  (
( x ( Rn
`  I ) y )  =  0  <->  ( sqr `  sum_ k  e.  I 
( ( ( x `
 k )  -  ( y `  k
) ) ^ 2 ) )  =  0 ) )
42 ffn 5716 . . . . . . 7  |-  ( x : I --> RR  ->  x  Fn  I )
436, 42syl 17 . . . . . 6  |-  ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  ->  x  Fn  I )
44 ffn 5716 . . . . . . 7  |-  ( y : I --> RR  ->  y  Fn  I )
4511, 44syl 17 . . . . . 6  |-  ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  ->  y  Fn  I )
46 eqfnfv 5961 . . . . . 6  |-  ( ( x  Fn  I  /\  y  Fn  I )  ->  ( x  =  y  <->  A. k  e.  I 
( x `  k
)  =  ( y `
 k ) ) )
4743, 45, 46syl2anc 661 . . . . 5  |-  ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  ->  (
x  =  y  <->  A. k  e.  I  ( x `  k )  =  ( y `  k ) ) )
4838, 41, 473bitr4d 287 . . . 4  |-  ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  ->  (
( x ( Rn
`  I ) y )  =  0  <->  x  =  y ) )
49 simpll 754 . . . . . . . 8  |-  ( ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  I  e.  Fin )
507adantlr 715 . . . . . . . . 9  |-  ( ( ( ( I  e. 
Fin  /\  ( x  e.  X  /\  y  e.  X ) )  /\  z  e.  X )  /\  k  e.  I
)  ->  ( x `  k )  e.  RR )
51 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  z  e.  X )
5251, 3syl6eleq 2502 . . . . . . . . . . 11  |-  ( ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  z  e.  ( RR  ^m  I
) )
53 elmapi 7480 . . . . . . . . . . 11  |-  ( z  e.  ( RR  ^m  I )  ->  z : I --> RR )
5452, 53syl 17 . . . . . . . . . 10  |-  ( ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  z : I --> RR )
5554ffvelrnda 6011 . . . . . . . . 9  |-  ( ( ( ( I  e. 
Fin  /\  ( x  e.  X  /\  y  e.  X ) )  /\  z  e.  X )  /\  k  e.  I
)  ->  ( z `  k )  e.  RR )
5650, 55resubcld 10030 . . . . . . . 8  |-  ( ( ( ( I  e. 
Fin  /\  ( x  e.  X  /\  y  e.  X ) )  /\  z  e.  X )  /\  k  e.  I
)  ->  ( (
x `  k )  -  ( z `  k ) )  e.  RR )
5712adantlr 715 . . . . . . . . 9  |-  ( ( ( ( I  e. 
Fin  /\  ( x  e.  X  /\  y  e.  X ) )  /\  z  e.  X )  /\  k  e.  I
)  ->  ( y `  k )  e.  RR )
5855, 57resubcld 10030 . . . . . . . 8  |-  ( ( ( ( I  e. 
Fin  /\  ( x  e.  X  /\  y  e.  X ) )  /\  z  e.  X )  /\  k  e.  I
)  ->  ( (
z `  k )  -  ( y `  k ) )  e.  RR )
5949, 56, 58trirn 22121 . . . . . . 7  |-  ( ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  ( sqr `  sum_ k  e.  I 
( ( ( ( x `  k )  -  ( z `  k ) )  +  ( ( z `  k )  -  (
y `  k )
) ) ^ 2 ) )  <_  (
( sqr `  sum_ k  e.  I  (
( ( x `  k )  -  (
z `  k )
) ^ 2 ) )  +  ( sqr `  sum_ k  e.  I 
( ( ( z `
 k )  -  ( y `  k
) ) ^ 2 ) ) ) )
6033adantlr 715 . . . . . . . . . . 11  |-  ( ( ( ( I  e. 
Fin  /\  ( x  e.  X  /\  y  e.  X ) )  /\  z  e.  X )  /\  k  e.  I
)  ->  ( x `  k )  e.  CC )
6155recnd 9654 . . . . . . . . . . 11  |-  ( ( ( ( I  e. 
Fin  /\  ( x  e.  X  /\  y  e.  X ) )  /\  z  e.  X )  /\  k  e.  I
)  ->  ( z `  k )  e.  CC )
6234adantlr 715 . . . . . . . . . . 11  |-  ( ( ( ( I  e. 
Fin  /\  ( x  e.  X  /\  y  e.  X ) )  /\  z  e.  X )  /\  k  e.  I
)  ->  ( y `  k )  e.  CC )
6360, 61, 62npncand 9993 . . . . . . . . . 10  |-  ( ( ( ( I  e. 
Fin  /\  ( x  e.  X  /\  y  e.  X ) )  /\  z  e.  X )  /\  k  e.  I
)  ->  ( (
( x `  k
)  -  ( z `
 k ) )  +  ( ( z `
 k )  -  ( y `  k
) ) )  =  ( ( x `  k )  -  (
y `  k )
) )
6463oveq1d 6295 . . . . . . . . 9  |-  ( ( ( ( I  e. 
Fin  /\  ( x  e.  X  /\  y  e.  X ) )  /\  z  e.  X )  /\  k  e.  I
)  ->  ( (
( ( x `  k )  -  (
z `  k )
)  +  ( ( z `  k )  -  ( y `  k ) ) ) ^ 2 )  =  ( ( ( x `
 k )  -  ( y `  k
) ) ^ 2 ) )
6564sumeq2dv 13676 . . . . . . . 8  |-  ( ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  sum_ k  e.  I  ( (
( ( x `  k )  -  (
z `  k )
)  +  ( ( z `  k )  -  ( y `  k ) ) ) ^ 2 )  = 
sum_ k  e.  I 
( ( ( x `
 k )  -  ( y `  k
) ) ^ 2 ) )
6665fveq2d 5855 . . . . . . 7  |-  ( ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  ( sqr `  sum_ k  e.  I 
( ( ( ( x `  k )  -  ( z `  k ) )  +  ( ( z `  k )  -  (
y `  k )
) ) ^ 2 ) )  =  ( sqr `  sum_ k  e.  I  ( (
( x `  k
)  -  ( y `
 k ) ) ^ 2 ) ) )
67 sqsubswap 12276 . . . . . . . . . . 11  |-  ( ( ( x `  k
)  e.  CC  /\  ( z `  k
)  e.  CC )  ->  ( ( ( x `  k )  -  ( z `  k ) ) ^
2 )  =  ( ( ( z `  k )  -  (
x `  k )
) ^ 2 ) )
6860, 61, 67syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ( I  e. 
Fin  /\  ( x  e.  X  /\  y  e.  X ) )  /\  z  e.  X )  /\  k  e.  I
)  ->  ( (
( x `  k
)  -  ( z `
 k ) ) ^ 2 )  =  ( ( ( z `
 k )  -  ( x `  k
) ) ^ 2 ) )
6968sumeq2dv 13676 . . . . . . . . 9  |-  ( ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  sum_ k  e.  I  ( (
( x `  k
)  -  ( z `
 k ) ) ^ 2 )  = 
sum_ k  e.  I 
( ( ( z `
 k )  -  ( x `  k
) ) ^ 2 ) )
7069fveq2d 5855 . . . . . . . 8  |-  ( ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  ( sqr `  sum_ k  e.  I 
( ( ( x `
 k )  -  ( z `  k
) ) ^ 2 ) )  =  ( sqr `  sum_ k  e.  I  ( (
( z `  k
)  -  ( x `
 k ) ) ^ 2 ) ) )
7170oveq1d 6295 . . . . . . 7  |-  ( ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  (
( sqr `  sum_ k  e.  I  (
( ( x `  k )  -  (
z `  k )
) ^ 2 ) )  +  ( sqr `  sum_ k  e.  I 
( ( ( z `
 k )  -  ( y `  k
) ) ^ 2 ) ) )  =  ( ( sqr `  sum_ k  e.  I  (
( ( z `  k )  -  (
x `  k )
) ^ 2 ) )  +  ( sqr `  sum_ k  e.  I 
( ( ( z `
 k )  -  ( y `  k
) ) ^ 2 ) ) ) )
7259, 66, 713brtr3d 4426 . . . . . 6  |-  ( ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  ( sqr `  sum_ k  e.  I 
( ( ( x `
 k )  -  ( y `  k
) ) ^ 2 ) )  <_  (
( sqr `  sum_ k  e.  I  (
( ( z `  k )  -  (
x `  k )
) ^ 2 ) )  +  ( sqr `  sum_ k  e.  I 
( ( ( z `
 k )  -  ( y `  k
) ) ^ 2 ) ) ) )
7340adantr 465 . . . . . 6  |-  ( ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  (
x ( Rn `  I ) y )  =  ( sqr `  sum_ k  e.  I  (
( ( x `  k )  -  (
y `  k )
) ^ 2 ) ) )
743rrnmval 31619 . . . . . . . . . 10  |-  ( ( I  e.  Fin  /\  z  e.  X  /\  x  e.  X )  ->  ( z ( Rn
`  I ) x )  =  ( sqr `  sum_ k  e.  I 
( ( ( z `
 k )  -  ( x `  k
) ) ^ 2 ) ) )
75743adant3r 1229 . . . . . . . . 9  |-  ( ( I  e.  Fin  /\  z  e.  X  /\  ( x  e.  X  /\  y  e.  X
) )  ->  (
z ( Rn `  I ) x )  =  ( sqr `  sum_ k  e.  I  (
( ( z `  k )  -  (
x `  k )
) ^ 2 ) ) )
763rrnmval 31619 . . . . . . . . . 10  |-  ( ( I  e.  Fin  /\  z  e.  X  /\  y  e.  X )  ->  ( z ( Rn
`  I ) y )  =  ( sqr `  sum_ k  e.  I 
( ( ( z `
 k )  -  ( y `  k
) ) ^ 2 ) ) )
77763adant3l 1228 . . . . . . . . 9  |-  ( ( I  e.  Fin  /\  z  e.  X  /\  ( x  e.  X  /\  y  e.  X
) )  ->  (
z ( Rn `  I ) y )  =  ( sqr `  sum_ k  e.  I  (
( ( z `  k )  -  (
y `  k )
) ^ 2 ) ) )
7875, 77oveq12d 6298 . . . . . . . 8  |-  ( ( I  e.  Fin  /\  z  e.  X  /\  ( x  e.  X  /\  y  e.  X
) )  ->  (
( z ( Rn
`  I ) x )  +  ( z ( Rn `  I
) y ) )  =  ( ( sqr `  sum_ k  e.  I 
( ( ( z `
 k )  -  ( x `  k
) ) ^ 2 ) )  +  ( sqr `  sum_ k  e.  I  ( (
( z `  k
)  -  ( y `
 k ) ) ^ 2 ) ) ) )
79783expa 1199 . . . . . . 7  |-  ( ( ( I  e.  Fin  /\  z  e.  X )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( z ( Rn `  I ) x )  +  ( z ( Rn `  I ) y ) )  =  ( ( sqr `  sum_ k  e.  I  ( (
( z `  k
)  -  ( x `
 k ) ) ^ 2 ) )  +  ( sqr `  sum_ k  e.  I  (
( ( z `  k )  -  (
y `  k )
) ^ 2 ) ) ) )
8079an32s 807 . . . . . 6  |-  ( ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  (
( z ( Rn
`  I ) x )  +  ( z ( Rn `  I
) y ) )  =  ( ( sqr `  sum_ k  e.  I 
( ( ( z `
 k )  -  ( x `  k
) ) ^ 2 ) )  +  ( sqr `  sum_ k  e.  I  ( (
( z `  k
)  -  ( y `
 k ) ) ^ 2 ) ) ) )
8172, 73, 803brtr4d 4427 . . . . 5  |-  ( ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  /\  z  e.  X )  ->  (
x ( Rn `  I ) y )  <_  ( ( z ( Rn `  I
) x )  +  ( z ( Rn
`  I ) y ) ) )
8281ralrimiva 2820 . . . 4  |-  ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  ->  A. z  e.  X  ( x
( Rn `  I
) y )  <_ 
( ( z ( Rn `  I ) x )  +  ( z ( Rn `  I ) y ) ) )
8348, 82jca 532 . . 3  |-  ( ( I  e.  Fin  /\  ( x  e.  X  /\  y  e.  X
) )  ->  (
( ( x ( Rn `  I ) y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x ( Rn `  I ) y )  <_  (
( z ( Rn
`  I ) x )  +  ( z ( Rn `  I
) y ) ) ) )
8483ralrimivva 2827 . 2  |-  ( I  e.  Fin  ->  A. x  e.  X  A. y  e.  X  ( (
( x ( Rn
`  I ) y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x ( Rn `  I ) y )  <_  ( ( z ( Rn `  I
) x )  +  ( z ( Rn
`  I ) y ) ) ) )
85 ovex 6308 . . . 4  |-  ( RR 
^m  I )  e. 
_V
863, 85eqeltri 2488 . . 3  |-  X  e. 
_V
87 ismet 21120 . . 3  |-  ( X  e.  _V  ->  (
( Rn `  I
)  e.  ( Met `  X )  <->  ( ( Rn `  I ) : ( X  X.  X
) --> RR  /\  A. x  e.  X  A. y  e.  X  (
( ( x ( Rn `  I ) y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x ( Rn `  I ) y )  <_  (
( z ( Rn
`  I ) x )  +  ( z ( Rn `  I
) y ) ) ) ) ) )
8886, 87ax-mp 5 . 2  |-  ( ( Rn `  I )  e.  ( Met `  X
)  <->  ( ( Rn
`  I ) : ( X  X.  X
) --> RR  /\  A. x  e.  X  A. y  e.  X  (
( ( x ( Rn `  I ) y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x ( Rn `  I ) y )  <_  (
( z ( Rn
`  I ) x )  +  ( z ( Rn `  I
) y ) ) ) ) )
8925, 84, 88sylanbrc 664 1  |-  ( I  e.  Fin  ->  ( Rn `  I )  e.  ( Met `  X
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 186    /\ wa 369    /\ w3a 976    = wceq 1407    e. wcel 1844   A.wral 2756   _Vcvv 3061   class class class wbr 4397    X. cxp 4823    Fn wfn 5566   -->wf 5567   ` cfv 5571  (class class class)co 6280    |-> cmpt2 6282    ^m cmap 7459   Fincfn 7556   CCcc 9522   RRcr 9523   0cc0 9524    + caddc 9527    <_ cle 9661    - cmin 9843   2c2 10628   ^cexp 12212   sqrcsqrt 13217   sum_csu 13659   Metcme 18726   Rncrrn 31616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-rep 4509  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576  ax-inf2 8093  ax-cnex 9580  ax-resscn 9581  ax-1cn 9582  ax-icn 9583  ax-addcl 9584  ax-addrcl 9585  ax-mulcl 9586  ax-mulrcl 9587  ax-mulcom 9588  ax-addass 9589  ax-mulass 9590  ax-distr 9591  ax-i2m1 9592  ax-1ne0 9593  ax-1rid 9594  ax-rnegex 9595  ax-rrecex 9596  ax-cnre 9597  ax-pre-lttri 9598  ax-pre-lttrn 9599  ax-pre-ltadd 9600  ax-pre-mulgt0 9601  ax-pre-sup 9602
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3or 977  df-3an 978  df-tru 1410  df-fal 1413  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-nel 2603  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-tp 3979  df-op 3981  df-uni 4194  df-int 4230  df-iun 4275  df-br 4398  df-opab 4456  df-mpt 4457  df-tr 4492  df-eprel 4736  df-id 4740  df-po 4746  df-so 4747  df-fr 4784  df-se 4785  df-we 4786  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-pred 5369  df-ord 5415  df-on 5416  df-lim 5417  df-suc 5418  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-isom 5580  df-riota 6242  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-om 6686  df-1st 6786  df-2nd 6787  df-wrecs 7015  df-recs 7077  df-rdg 7115  df-1o 7169  df-oadd 7173  df-er 7350  df-map 7461  df-en 7557  df-dom 7558  df-sdom 7559  df-fin 7560  df-sup 7937  df-oi 7971  df-card 8354  df-pnf 9662  df-mnf 9663  df-xr 9664  df-ltxr 9665  df-le 9666  df-sub 9845  df-neg 9846  df-div 10250  df-nn 10579  df-2 10637  df-3 10638  df-4 10639  df-n0 10839  df-z 10908  df-uz 11130  df-rp 11268  df-ico 11590  df-fz 11729  df-fzo 11857  df-seq 12154  df-exp 12213  df-hash 12455  df-cj 13083  df-re 13084  df-im 13085  df-sqrt 13219  df-abs 13220  df-clim 13462  df-sum 13660  df-met 18735  df-rrn 31617
This theorem is referenced by:  rrncmslem  31623  rrncms  31624  rrnequiv  31626  rrntotbnd  31627  rrnheibor  31628  ismrer1  31629  reheibor  31630
  Copyright terms: Public domain W3C validator