Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrnequiv Structured version   Unicode version

Theorem rrnequiv 32068
Description: The supremum metric on  RR ^ I is equivalent to the  Rn metric. (Contributed by Jeff Madsen, 15-Sep-2015.)
Hypotheses
Ref Expression
rrnequiv.y  |-  Y  =  ( (flds  RR )  ^s  I )
rrnequiv.d  |-  D  =  ( dist `  Y
)
rrnequiv.1  |-  X  =  ( RR  ^m  I
)
rrnequiv.i  |-  ( ph  ->  I  e.  Fin )
Assertion
Ref Expression
rrnequiv  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( ( F D G )  <_  ( F ( Rn `  I ) G )  /\  ( F ( Rn `  I ) G )  <_  (
( sqr `  ( # `
 I ) )  x.  ( F D G ) ) ) )

Proof of Theorem rrnequiv
Dummy variables  k 
r  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrnequiv.d . . . . . 6  |-  D  =  ( dist `  Y
)
2 ovex 6270 . . . . . . . 8  |-  (flds  RR )  e.  _V
3 rrnequiv.i . . . . . . . . 9  |-  ( ph  ->  I  e.  Fin )
43adantr 466 . . . . . . . 8  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  I  e.  Fin )
5 rrnequiv.y . . . . . . . . 9  |-  Y  =  ( (flds  RR )  ^s  I )
6 reex 9574 . . . . . . . . . 10  |-  RR  e.  _V
7 eqid 2422 . . . . . . . . . . 11  |-  (flds  RR )  =  (flds  RR )
8 eqid 2422 . . . . . . . . . . 11  |-  (Scalar ` fld )  =  (Scalar ` fld )
97, 8resssca 15211 . . . . . . . . . 10  |-  ( RR  e.  _V  ->  (Scalar ` fld )  =  (Scalar `  (flds  RR )
) )
106, 9ax-mp 5 . . . . . . . . 9  |-  (Scalar ` fld )  =  (Scalar `  (flds  RR ) )
115, 10pwsval 15320 . . . . . . . 8  |-  ( ( (flds  RR )  e.  _V  /\  I  e.  Fin )  ->  Y  =  ( (Scalar ` fld ) X_s ( I  X.  {
(flds  RR ) } ) ) )
122, 4, 11sylancr 667 . . . . . . 7  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  Y  =  ( (Scalar ` fld )
X_s ( I  X.  {
(flds  RR ) } ) ) )
1312fveq2d 5822 . . . . . 6  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( dist `  Y )  =  ( dist `  (
(Scalar ` fld ) X_s ( I  X.  {
(flds  RR ) } ) ) ) )
141, 13syl5eq 2468 . . . . 5  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  D  =  ( dist `  ( (Scalar ` fld ) X_s ( I  X.  {
(flds  RR ) } ) ) ) )
1514oveqd 6259 . . . 4  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( F D G )  =  ( F ( dist `  (
(Scalar ` fld ) X_s ( I  X.  {
(flds  RR ) } ) ) ) G ) )
16 fconstmpt 4833 . . . . . 6  |-  ( I  X.  { (flds  RR ) } )  =  ( k  e.  I  |->  (flds  RR ) )
1716oveq2i 6253 . . . . 5  |-  ( (Scalar ` fld ) X_s ( I  X.  {
(flds  RR ) } ) )  =  ( (Scalar ` fld ) X_s ( k  e.  I  |->  (flds  RR ) ) )
18 eqid 2422 . . . . 5  |-  ( Base `  ( (Scalar ` fld ) X_s ( I  X.  {
(flds  RR ) } ) ) )  =  ( Base `  (
(Scalar ` fld ) X_s ( I  X.  {
(flds  RR ) } ) ) )
19 fvex 5828 . . . . . 6  |-  (Scalar ` fld )  e.  _V
2019a1i 11 . . . . 5  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
(Scalar ` fld )  e.  _V )
212a1i 11 . . . . . 6  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  k  e.  I )  ->  (flds  RR )  e.  _V )
2221ralrimiva 2773 . . . . 5  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  A. k  e.  I 
(flds  RR )  e.  _V )
23 simprl 762 . . . . . 6  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  F  e.  X )
24 rrnequiv.1 . . . . . . 7  |-  X  =  ( RR  ^m  I
)
25 ax-resscn 9540 . . . . . . . . . . 11  |-  RR  C_  CC
26 cnfldbas 18910 . . . . . . . . . . . 12  |-  CC  =  ( Base ` fld )
277, 26ressbas2 15116 . . . . . . . . . . 11  |-  ( RR  C_  CC  ->  RR  =  ( Base `  (flds  RR ) ) )
2825, 27ax-mp 5 . . . . . . . . . 10  |-  RR  =  ( Base `  (flds  RR ) )
295, 28pwsbas 15321 . . . . . . . . 9  |-  ( ( (flds  RR )  e.  _V  /\  I  e.  Fin )  ->  ( RR  ^m  I
)  =  ( Base `  Y ) )
302, 4, 29sylancr 667 . . . . . . . 8  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( RR  ^m  I
)  =  ( Base `  Y ) )
3112fveq2d 5822 . . . . . . . 8  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( Base `  Y )  =  ( Base `  (
(Scalar ` fld ) X_s ( I  X.  {
(flds  RR ) } ) ) ) )
3230, 31eqtrd 2456 . . . . . . 7  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( RR  ^m  I
)  =  ( Base `  ( (Scalar ` fld ) X_s ( I  X.  {
(flds  RR ) } ) ) ) )
3324, 32syl5eq 2468 . . . . . 6  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  X  =  ( Base `  ( (Scalar ` fld ) X_s ( I  X.  {
(flds  RR ) } ) ) ) )
3423, 33eleqtrd 2502 . . . . 5  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  F  e.  ( Base `  ( (Scalar ` fld ) X_s ( I  X.  {
(flds  RR ) } ) ) ) )
35 simprr 764 . . . . . 6  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  G  e.  X )
3635, 33eleqtrd 2502 . . . . 5  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  G  e.  ( Base `  ( (Scalar ` fld ) X_s ( I  X.  {
(flds  RR ) } ) ) ) )
37 cnfldds 18916 . . . . . . . 8  |-  ( abs 
o.  -  )  =  ( dist ` fld )
387, 37ressds 15247 . . . . . . 7  |-  ( RR  e.  _V  ->  ( abs  o.  -  )  =  ( dist `  (flds  RR )
) )
396, 38ax-mp 5 . . . . . 6  |-  ( abs 
o.  -  )  =  ( dist `  (flds  RR ) )
4039reseq1i 5056 . . . . 5  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  =  ( ( dist `  (flds  RR )
)  |`  ( RR  X.  RR ) )
41 eqid 2422 . . . . 5  |-  ( dist `  ( (Scalar ` fld ) X_s ( I  X.  {
(flds  RR ) } ) ) )  =  ( dist `  (
(Scalar ` fld ) X_s ( I  X.  {
(flds  RR ) } ) ) )
4217, 18, 20, 4, 22, 34, 36, 28, 40, 41prdsdsval3 15319 . . . 4  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( F ( dist `  ( (Scalar ` fld ) X_s ( I  X.  {
(flds  RR ) } ) ) ) G )  =  sup ( ( ran  (
k  e.  I  |->  ( ( F `  k
) ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) ( G `  k
) ) )  u. 
{ 0 } ) ,  RR* ,  <  )
)
4315, 42eqtrd 2456 . . 3  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( F D G )  =  sup (
( ran  ( k  e.  I  |->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( G `  k
) ) )  u. 
{ 0 } ) ,  RR* ,  <  )
)
44 eqid 2422 . . . . . . . . . 10  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )
4524, 44rrndstprj1 32063 . . . . . . . . 9  |-  ( ( ( I  e.  Fin  /\  k  e.  I )  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) )  <_  ( F ( Rn `  I ) G ) )
4645an32s 811 . . . . . . . 8  |-  ( ( ( I  e.  Fin  /\  ( F  e.  X  /\  G  e.  X
) )  /\  k  e.  I )  ->  (
( F `  k
) ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) ( G `  k
) )  <_  ( F ( Rn `  I ) G ) )
473, 46sylanl1 654 . . . . . . 7  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  k  e.  I )  ->  (
( F `  k
) ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) ( G `  k
) )  <_  ( F ( Rn `  I ) G ) )
4847ralrimiva 2773 . . . . . 6  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  A. k  e.  I 
( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) )  <_  ( F ( Rn `  I ) G ) )
49 ovex 6270 . . . . . . . 8  |-  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( G `  k
) )  e.  _V
5049rgenw 2720 . . . . . . 7  |-  A. k  e.  I  ( ( F `  k )
( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( G `  k
) )  e.  _V
51 eqid 2422 . . . . . . . 8  |-  ( k  e.  I  |->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( G `  k
) ) )  =  ( k  e.  I  |->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) ) )
52 breq1 4362 . . . . . . . 8  |-  ( z  =  ( ( F `
 k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) )  ->  ( z  <_ 
( F ( Rn
`  I ) G )  <->  ( ( F `
 k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) )  <_  ( F ( Rn `  I ) G ) ) )
5351, 52ralrnmpt 5983 . . . . . . 7  |-  ( A. k  e.  I  (
( F `  k
) ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) ( G `  k
) )  e.  _V  ->  ( A. z  e. 
ran  ( k  e.  I  |->  ( ( F `
 k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) ) ) z  <_  ( F ( Rn `  I ) G )  <->  A. k  e.  I 
( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) )  <_  ( F ( Rn `  I ) G ) ) )
5450, 53ax-mp 5 . . . . . 6  |-  ( A. z  e.  ran  ( k  e.  I  |->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( G `  k
) ) ) z  <_  ( F ( Rn `  I ) G )  <->  A. k  e.  I  ( ( F `  k )
( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( G `  k
) )  <_  ( F ( Rn `  I ) G ) )
5548, 54sylibr 215 . . . . 5  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  A. z  e.  ran  ( k  e.  I  |->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) ) ) z  <_  ( F ( Rn `  I ) G ) )
5624rrnmet 32062 . . . . . . . . 9  |-  ( I  e.  Fin  ->  ( Rn `  I )  e.  ( Met `  X
) )
574, 56syl 17 . . . . . . . 8  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( Rn `  I
)  e.  ( Met `  X ) )
58 metge0 21295 . . . . . . . 8  |-  ( ( ( Rn `  I
)  e.  ( Met `  X )  /\  F  e.  X  /\  G  e.  X )  ->  0  <_  ( F ( Rn
`  I ) G ) )
5957, 23, 35, 58syl3anc 1264 . . . . . . 7  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
0  <_  ( F
( Rn `  I
) G ) )
60 elsni 3959 . . . . . . . 8  |-  ( z  e.  { 0 }  ->  z  =  0 )
6160breq1d 4369 . . . . . . 7  |-  ( z  e.  { 0 }  ->  ( z  <_ 
( F ( Rn
`  I ) G )  <->  0  <_  ( F ( Rn `  I ) G ) ) )
6259, 61syl5ibrcom 225 . . . . . 6  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( z  e.  {
0 }  ->  z  <_  ( F ( Rn
`  I ) G ) ) )
6362ralrimiv 2771 . . . . 5  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  A. z  e.  { 0 } z  <_  ( F ( Rn `  I ) G ) )
64 ralunb 3583 . . . . 5  |-  ( A. z  e.  ( ran  ( k  e.  I  |->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) ) )  u.  { 0 } ) z  <_ 
( F ( Rn
`  I ) G )  <->  ( A. z  e.  ran  ( k  e.  I  |->  ( ( F `
 k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) ) ) z  <_  ( F ( Rn `  I ) G )  /\  A. z  e. 
{ 0 } z  <_  ( F ( Rn `  I ) G ) ) )
6555, 63, 64sylanbrc 668 . . . 4  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  A. z  e.  ( ran  ( k  e.  I  |->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) ) )  u.  { 0 } ) z  <_ 
( F ( Rn
`  I ) G ) )
6617, 18, 20, 4, 22, 28, 34prdsbascl 15317 . . . . . . . . . . 11  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  A. k  e.  I 
( F `  k
)  e.  RR )
6766r19.21bi 2728 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  k  e.  I )  ->  ( F `  k )  e.  RR )
6817, 18, 20, 4, 22, 28, 36prdsbascl 15317 . . . . . . . . . . 11  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  A. k  e.  I 
( G `  k
)  e.  RR )
6968r19.21bi 2728 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  k  e.  I )  ->  ( G `  k )  e.  RR )
7044remet 21743 . . . . . . . . . . 11  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  e.  ( Met `  RR )
71 metcl 21282 . . . . . . . . . . 11  |-  ( ( ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )  e.  ( Met `  RR )  /\  ( F `  k )  e.  RR  /\  ( G `  k
)  e.  RR )  ->  ( ( F `
 k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) )  e.  RR )
7270, 71mp3an1 1347 . . . . . . . . . 10  |-  ( ( ( F `  k
)  e.  RR  /\  ( G `  k )  e.  RR )  -> 
( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) )  e.  RR )
7367, 69, 72syl2anc 665 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  k  e.  I )  ->  (
( F `  k
) ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) ( G `  k
) )  e.  RR )
7473, 51fmptd 5998 . . . . . . . 8  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( k  e.  I  |->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) ) ) : I --> RR )
75 frn 5688 . . . . . . . 8  |-  ( ( k  e.  I  |->  ( ( F `  k
) ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) ( G `  k
) ) ) : I --> RR  ->  ran  ( k  e.  I  |->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) ) )  C_  RR )
7674, 75syl 17 . . . . . . 7  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  ran  ( k  e.  I  |->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) ) )  C_  RR )
77 ressxr 9628 . . . . . . 7  |-  RR  C_  RR*
7876, 77syl6ss 3412 . . . . . 6  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  ran  ( k  e.  I  |->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) ) )  C_  RR* )
79 0xr 9631 . . . . . . . 8  |-  0  e.  RR*
8079a1i 11 . . . . . . 7  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
0  e.  RR* )
8180snssd 4081 . . . . . 6  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  { 0 }  C_  RR* )
8278, 81unssd 3578 . . . . 5  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( ran  ( k  e.  I  |->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( G `  k
) ) )  u. 
{ 0 } ) 
C_  RR* )
83 metcl 21282 . . . . . . 7  |-  ( ( ( Rn `  I
)  e.  ( Met `  X )  /\  F  e.  X  /\  G  e.  X )  ->  ( F ( Rn `  I ) G )  e.  RR )
8457, 23, 35, 83syl3anc 1264 . . . . . 6  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( F ( Rn
`  I ) G )  e.  RR )
8577, 84sseldi 3398 . . . . 5  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( F ( Rn
`  I ) G )  e.  RR* )
86 supxrleub 11556 . . . . 5  |-  ( ( ( ran  ( k  e.  I  |->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( G `  k
) ) )  u. 
{ 0 } ) 
C_  RR*  /\  ( F ( Rn `  I
) G )  e. 
RR* )  ->  ( sup ( ( ran  (
k  e.  I  |->  ( ( F `  k
) ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) ( G `  k
) ) )  u. 
{ 0 } ) ,  RR* ,  <  )  <_  ( F ( Rn
`  I ) G )  <->  A. z  e.  ( ran  ( k  e.  I  |->  ( ( F `
 k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) ) )  u.  { 0 } ) z  <_ 
( F ( Rn
`  I ) G ) ) )
8782, 85, 86syl2anc 665 . . . 4  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( sup ( ( ran  ( k  e.  I  |->  ( ( F `
 k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) ) )  u.  { 0 } ) ,  RR* ,  <  )  <_  ( F ( Rn `  I ) G )  <->  A. z  e.  ( ran  ( k  e.  I  |->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) ) )  u.  { 0 } ) z  <_ 
( F ( Rn
`  I ) G ) ) )
8865, 87mpbird 235 . . 3  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  sup ( ( ran  (
k  e.  I  |->  ( ( F `  k
) ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) ( G `  k
) ) )  u. 
{ 0 } ) ,  RR* ,  <  )  <_  ( F ( Rn
`  I ) G ) )
8943, 88eqbrtrd 4380 . 2  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( F D G )  <_  ( F
( Rn `  I
) G ) )
90 rzal 3837 . . . . . . 7  |-  ( I  =  (/)  ->  A. k  e.  I  ( F `  k )  =  ( G `  k ) )
9123, 24syl6eleq 2510 . . . . . . . . 9  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  F  e.  ( RR  ^m  I ) )
92 elmapi 7441 . . . . . . . . 9  |-  ( F  e.  ( RR  ^m  I )  ->  F : I --> RR )
93 ffn 5682 . . . . . . . . 9  |-  ( F : I --> RR  ->  F  Fn  I )
9491, 92, 933syl 18 . . . . . . . 8  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  F  Fn  I )
9535, 24syl6eleq 2510 . . . . . . . . 9  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  G  e.  ( RR  ^m  I ) )
96 elmapi 7441 . . . . . . . . 9  |-  ( G  e.  ( RR  ^m  I )  ->  G : I --> RR )
97 ffn 5682 . . . . . . . . 9  |-  ( G : I --> RR  ->  G  Fn  I )
9895, 96, 973syl 18 . . . . . . . 8  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  G  Fn  I )
99 eqfnfv 5928 . . . . . . . 8  |-  ( ( F  Fn  I  /\  G  Fn  I )  ->  ( F  =  G  <->  A. k  e.  I 
( F `  k
)  =  ( G `
 k ) ) )
10094, 98, 99syl2anc 665 . . . . . . 7  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( F  =  G  <->  A. k  e.  I 
( F `  k
)  =  ( G `
 k ) ) )
10190, 100syl5ibr 224 . . . . . 6  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( I  =  (/)  ->  F  =  G ) )
102101imp 430 . . . . 5  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  I  =  (/) )  ->  F  =  G )
103102oveq1d 6257 . . . 4  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  I  =  (/) )  ->  ( F
( Rn `  I
) G )  =  ( G ( Rn
`  I ) G ) )
104 met0 21293 . . . . . . 7  |-  ( ( ( Rn `  I
)  e.  ( Met `  X )  /\  G  e.  X )  ->  ( G ( Rn `  I ) G )  =  0 )
10557, 35, 104syl2anc 665 . . . . . 6  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( G ( Rn
`  I ) G )  =  0 )
106 hashcl 12481 . . . . . . . . . 10  |-  ( I  e.  Fin  ->  ( # `
 I )  e. 
NN0 )
1074, 106syl 17 . . . . . . . . 9  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( # `  I )  e.  NN0 )
108107nn0red 10870 . . . . . . . 8  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( # `  I )  e.  RR )
109107nn0ge0d 10872 . . . . . . . 8  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
0  <_  ( # `  I
) )
110108, 109resqrtcld 13416 . . . . . . 7  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( sqr `  ( # `
 I ) )  e.  RR )
1115, 1, 24repwsmet 32067 . . . . . . . . 9  |-  ( I  e.  Fin  ->  D  e.  ( Met `  X
) )
1124, 111syl 17 . . . . . . . 8  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  D  e.  ( Met `  X ) )
113 metcl 21282 . . . . . . . 8  |-  ( ( D  e.  ( Met `  X )  /\  F  e.  X  /\  G  e.  X )  ->  ( F D G )  e.  RR )
114112, 23, 35, 113syl3anc 1264 . . . . . . 7  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( F D G )  e.  RR )
115108, 109sqrtge0d 13419 . . . . . . 7  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
0  <_  ( sqr `  ( # `  I
) ) )
116 metge0 21295 . . . . . . . 8  |-  ( ( D  e.  ( Met `  X )  /\  F  e.  X  /\  G  e.  X )  ->  0  <_  ( F D G ) )
117112, 23, 35, 116syl3anc 1264 . . . . . . 7  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
0  <_  ( F D G ) )
118110, 114, 115, 117mulge0d 10134 . . . . . 6  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
0  <_  ( ( sqr `  ( # `  I
) )  x.  ( F D G ) ) )
119105, 118eqbrtrd 4380 . . . . 5  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( G ( Rn
`  I ) G )  <_  ( ( sqr `  ( # `  I
) )  x.  ( F D G ) ) )
120119adantr 466 . . . 4  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  I  =  (/) )  ->  ( G
( Rn `  I
) G )  <_ 
( ( sqr `  ( # `
 I ) )  x.  ( F D G ) ) )
121103, 120eqbrtrd 4380 . . 3  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  I  =  (/) )  ->  ( F
( Rn `  I
) G )  <_ 
( ( sqr `  ( # `
 I ) )  x.  ( F D G ) ) )
12284adantr 466 . . . . . . 7  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  ( F ( Rn `  I ) G )  e.  RR )
123110, 114remulcld 9615 . . . . . . . . 9  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( ( sqr `  ( # `
 I ) )  x.  ( F D G ) )  e.  RR )
124123adantr 466 . . . . . . . 8  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  (
( sqr `  ( # `
 I ) )  x.  ( F D G ) )  e.  RR )
125 rpre 11252 . . . . . . . . 9  |-  ( r  e.  RR+  ->  r  e.  RR )
126125ad2antll 733 . . . . . . . 8  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  r  e.  RR )
127124, 126readdcld 9614 . . . . . . 7  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  (
( ( sqr `  ( # `
 I ) )  x.  ( F D G ) )  +  r )  e.  RR )
1284adantr 466 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  I  e.  Fin )
129 simprl 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  I  =/=  (/) )
130 eldifsn 4061 . . . . . . . . . 10  |-  ( I  e.  ( Fin  \  { (/)
} )  <->  ( I  e.  Fin  /\  I  =/=  (/) ) )
131128, 129, 130sylanbrc 668 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  I  e.  ( Fin  \  { (/)
} ) )
13223adantr 466 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  F  e.  X )
13335adantr 466 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  G  e.  X )
134114adantr 466 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  ( F D G )  e.  RR )
135 simprr 764 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  r  e.  RR+ )
136 hashnncl 12490 . . . . . . . . . . . . . . . . 17  |-  ( I  e.  Fin  ->  (
( # `  I )  e.  NN  <->  I  =/=  (/) ) )
137128, 136syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  (
( # `  I )  e.  NN  <->  I  =/=  (/) ) )
138129, 137mpbird 235 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  ( # `
 I )  e.  NN )
139138nnrpd 11283 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  ( # `
 I )  e.  RR+ )
140139rpsqrtcld 13410 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  ( sqr `  ( # `  I
) )  e.  RR+ )
141135, 140rpdivcld 11302 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  (
r  /  ( sqr `  ( # `  I
) ) )  e.  RR+ )
142141rpred 11285 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  (
r  /  ( sqr `  ( # `  I
) ) )  e.  RR )
143134, 142readdcld 9614 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  (
( F D G )  +  ( r  /  ( sqr `  ( # `
 I ) ) ) )  e.  RR )
144 0red 9588 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  0  e.  RR )
145117adantr 466 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  0  <_  ( F D G ) )
146134, 141ltaddrpd 11315 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  ( F D G )  < 
( ( F D G )  +  ( r  /  ( sqr `  ( # `  I
) ) ) ) )
147144, 134, 143, 145, 146lelttrd 9737 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  0  <  ( ( F D G )  +  ( r  /  ( sqr `  ( # `  I
) ) ) ) )
148143, 147elrpd 11282 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  (
( F D G )  +  ( r  /  ( sqr `  ( # `
 I ) ) ) )  e.  RR+ )
14973adantlr 719 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X
) )  /\  (
I  =/=  (/)  /\  r  e.  RR+ ) )  /\  k  e.  I )  ->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) )  e.  RR )
150134adantr 466 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X
) )  /\  (
I  =/=  (/)  /\  r  e.  RR+ ) )  /\  k  e.  I )  ->  ( F D G )  e.  RR )
151143adantr 466 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X
) )  /\  (
I  =/=  (/)  /\  r  e.  RR+ ) )  /\  k  e.  I )  ->  ( ( F D G )  +  ( r  /  ( sqr `  ( # `  I
) ) ) )  e.  RR )
15282ad2antrr 730 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X
) )  /\  (
I  =/=  (/)  /\  r  e.  RR+ ) )  /\  k  e.  I )  ->  ( ran  ( k  e.  I  |->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( G `  k
) ) )  u. 
{ 0 } ) 
C_  RR* )
153 ssun1 3565 . . . . . . . . . . . . . 14  |-  ran  (
k  e.  I  |->  ( ( F `  k
) ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) ( G `  k
) ) )  C_  ( ran  ( k  e.  I  |->  ( ( F `
 k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) ) )  u.  { 0 } )
154 simpr 462 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X
) )  /\  (
I  =/=  (/)  /\  r  e.  RR+ ) )  /\  k  e.  I )  ->  k  e.  I )
15551elrnmpt1 5038 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  I  /\  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) )  e.  _V )  -> 
( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) )  e.  ran  ( k  e.  I  |->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( G `  k
) ) ) )
156154, 49, 155sylancl 666 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X
) )  /\  (
I  =/=  (/)  /\  r  e.  RR+ ) )  /\  k  e.  I )  ->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) )  e.  ran  ( k  e.  I  |->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( G `  k
) ) ) )
157153, 156sseldi 3398 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X
) )  /\  (
I  =/=  (/)  /\  r  e.  RR+ ) )  /\  k  e.  I )  ->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) )  e.  ( ran  (
k  e.  I  |->  ( ( F `  k
) ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) ( G `  k
) ) )  u. 
{ 0 } ) )
158 supxrub 11554 . . . . . . . . . . . . 13  |-  ( ( ( ran  ( k  e.  I  |->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( G `  k
) ) )  u. 
{ 0 } ) 
C_  RR*  /\  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( G `  k
) )  e.  ( ran  ( k  e.  I  |->  ( ( F `
 k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) ) )  u.  { 0 } ) )  -> 
( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) )  <_  sup ( ( ran  ( k  e.  I  |->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )
159152, 157, 158syl2anc 665 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X
) )  /\  (
I  =/=  (/)  /\  r  e.  RR+ ) )  /\  k  e.  I )  ->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) )  <_  sup ( ( ran  ( k  e.  I  |->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )
16043ad2antrr 730 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X
) )  /\  (
I  =/=  (/)  /\  r  e.  RR+ ) )  /\  k  e.  I )  ->  ( F D G )  =  sup (
( ran  ( k  e.  I  |->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( G `  k
) ) )  u. 
{ 0 } ) ,  RR* ,  <  )
)
161159, 160breqtrrd 4386 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X
) )  /\  (
I  =/=  (/)  /\  r  e.  RR+ ) )  /\  k  e.  I )  ->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) )  <_  ( F D G ) )
162146adantr 466 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X
) )  /\  (
I  =/=  (/)  /\  r  e.  RR+ ) )  /\  k  e.  I )  ->  ( F D G )  <  ( ( F D G )  +  ( r  / 
( sqr `  ( # `
 I ) ) ) ) )
163149, 150, 151, 161, 162lelttrd 9737 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X
) )  /\  (
I  =/=  (/)  /\  r  e.  RR+ ) )  /\  k  e.  I )  ->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) )  <  ( ( F D G )  +  ( r  /  ( sqr `  ( # `  I
) ) ) ) )
164163ralrimiva 2773 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  A. k  e.  I  ( ( F `  k )
( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( G `  k
) )  <  (
( F D G )  +  ( r  /  ( sqr `  ( # `
 I ) ) ) ) )
16524, 44rrndstprj2 32064 . . . . . . . . 9  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  (
( ( F D G )  +  ( r  /  ( sqr `  ( # `  I
) ) ) )  e.  RR+  /\  A. k  e.  I  ( ( F `  k )
( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( G `  k
) )  <  (
( F D G )  +  ( r  /  ( sqr `  ( # `
 I ) ) ) ) ) )  ->  ( F ( Rn `  I ) G )  <  (
( ( F D G )  +  ( r  /  ( sqr `  ( # `  I
) ) ) )  x.  ( sqr `  ( # `
 I ) ) ) )
166131, 132, 133, 148, 164, 165syl32anc 1272 . . . . . . . 8  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  ( F ( Rn `  I ) G )  <  ( ( ( F D G )  +  ( r  / 
( sqr `  ( # `
 I ) ) ) )  x.  ( sqr `  ( # `  I
) ) ) )
167134recnd 9613 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  ( F D G )  e.  CC )
168142recnd 9613 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  (
r  /  ( sqr `  ( # `  I
) ) )  e.  CC )
169110adantr 466 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  ( sqr `  ( # `  I
) )  e.  RR )
170169recnd 9613 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  ( sqr `  ( # `  I
) )  e.  CC )
171167, 168, 170adddird 9612 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  (
( ( F D G )  +  ( r  /  ( sqr `  ( # `  I
) ) ) )  x.  ( sqr `  ( # `
 I ) ) )  =  ( ( ( F D G )  x.  ( sqr `  ( # `  I
) ) )  +  ( ( r  / 
( sqr `  ( # `
 I ) ) )  x.  ( sqr `  ( # `  I
) ) ) ) )
172167, 170mulcomd 9608 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  (
( F D G )  x.  ( sqr `  ( # `  I
) ) )  =  ( ( sqr `  ( # `
 I ) )  x.  ( F D G ) ) )
173126recnd 9613 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  r  e.  CC )
174140rpne0d 11290 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  ( sqr `  ( # `  I
) )  =/=  0
)
175173, 170, 174divcan1d 10328 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  (
( r  /  ( sqr `  ( # `  I
) ) )  x.  ( sqr `  ( # `
 I ) ) )  =  r )
176172, 175oveq12d 6260 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  (
( ( F D G )  x.  ( sqr `  ( # `  I
) ) )  +  ( ( r  / 
( sqr `  ( # `
 I ) ) )  x.  ( sqr `  ( # `  I
) ) ) )  =  ( ( ( sqr `  ( # `  I ) )  x.  ( F D G ) )  +  r ) )
177171, 176eqtrd 2456 . . . . . . . 8  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  (
( ( F D G )  +  ( r  /  ( sqr `  ( # `  I
) ) ) )  x.  ( sqr `  ( # `
 I ) ) )  =  ( ( ( sqr `  ( # `
 I ) )  x.  ( F D G ) )  +  r ) )
178166, 177breqtrd 4384 . . . . . . 7  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  ( F ( Rn `  I ) G )  <  ( ( ( sqr `  ( # `  I ) )  x.  ( F D G ) )  +  r ) )
179122, 127, 178ltled 9727 . . . . . 6  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  ( F ( Rn `  I ) G )  <_  ( ( ( sqr `  ( # `  I ) )  x.  ( F D G ) )  +  r ) )
180179anassrs 652 . . . . 5  |-  ( ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X
) )  /\  I  =/=  (/) )  /\  r  e.  RR+ )  ->  ( F ( Rn `  I ) G )  <_  ( ( ( sqr `  ( # `  I ) )  x.  ( F D G ) )  +  r ) )
181180ralrimiva 2773 . . . 4  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  I  =/=  (/) )  ->  A. r  e.  RR+  ( F ( Rn `  I ) G )  <_  (
( ( sqr `  ( # `
 I ) )  x.  ( F D G ) )  +  r ) )
182 alrple 11443 . . . . . 6  |-  ( ( ( F ( Rn
`  I ) G )  e.  RR  /\  ( ( sqr `  ( # `
 I ) )  x.  ( F D G ) )  e.  RR )  ->  (
( F ( Rn
`  I ) G )  <_  ( ( sqr `  ( # `  I
) )  x.  ( F D G ) )  <->  A. r  e.  RR+  ( F ( Rn `  I ) G )  <_  ( ( ( sqr `  ( # `  I ) )  x.  ( F D G ) )  +  r ) ) )
18384, 123, 182syl2anc 665 . . . . 5  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( ( F ( Rn `  I ) G )  <_  (
( sqr `  ( # `
 I ) )  x.  ( F D G ) )  <->  A. r  e.  RR+  ( F ( Rn `  I ) G )  <_  (
( ( sqr `  ( # `
 I ) )  x.  ( F D G ) )  +  r ) ) )
184183adantr 466 . . . 4  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  I  =/=  (/) )  ->  ( ( F ( Rn `  I ) G )  <_  ( ( sqr `  ( # `  I
) )  x.  ( F D G ) )  <->  A. r  e.  RR+  ( F ( Rn `  I ) G )  <_  ( ( ( sqr `  ( # `  I ) )  x.  ( F D G ) )  +  r ) ) )
185181, 184mpbird 235 . . 3  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  I  =/=  (/) )  ->  ( F
( Rn `  I
) G )  <_ 
( ( sqr `  ( # `
 I ) )  x.  ( F D G ) ) )
186121, 185pm2.61dane 2682 . 2  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( F ( Rn
`  I ) G )  <_  ( ( sqr `  ( # `  I
) )  x.  ( F D G ) ) )
18789, 186jca 534 1  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( ( F D G )  <_  ( F ( Rn `  I ) G )  /\  ( F ( Rn `  I ) G )  <_  (
( sqr `  ( # `
 I ) )  x.  ( F D G ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1872    =/= wne 2593   A.wral 2708   _Vcvv 3016    \ cdif 3369    u. cun 3370    C_ wss 3372   (/)c0 3697   {csn 3934   class class class wbr 4359    |-> cmpt 4418    X. cxp 4787   ran crn 4790    |` cres 4791    o. ccom 4793    Fn wfn 5532   -->wf 5533   ` cfv 5537  (class class class)co 6242    ^m cmap 7420   Fincfn 7517   supcsup 7900   CCcc 9481   RRcr 9482   0cc0 9483    + caddc 9486    x. cmul 9488   RR*cxr 9618    < clt 9619    <_ cle 9620    - cmin 9804    / cdiv 10213   NNcn 10553   NN0cn0 10813   RR+crp 11246   #chash 12458   sqrcsqrt 13233   abscabs 13234   Basecbs 15057   ↾s cress 15058  Scalarcsca 15129   distcds 15135   X_scprds 15280    ^s cpws 15281   Metcme 18892  ℂfldccnfld 18906   Rncrrn 32058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2058  ax-ext 2402  ax-rep 4472  ax-sep 4482  ax-nul 4491  ax-pow 4538  ax-pr 4596  ax-un 6534  ax-inf2 8092  ax-cnex 9539  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-mulcom 9547  ax-addass 9548  ax-mulass 9549  ax-distr 9550  ax-i2m1 9551  ax-1ne0 9552  ax-1rid 9553  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558  ax-pre-ltadd 9559  ax-pre-mulgt0 9560  ax-pre-sup 9561
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2274  df-mo 2275  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2552  df-ne 2595  df-nel 2596  df-ral 2713  df-rex 2714  df-reu 2715  df-rmo 2716  df-rab 2717  df-v 3018  df-sbc 3236  df-csb 3332  df-dif 3375  df-un 3377  df-in 3379  df-ss 3386  df-pss 3388  df-nul 3698  df-if 3848  df-pw 3919  df-sn 3935  df-pr 3937  df-tp 3939  df-op 3941  df-uni 4156  df-int 4192  df-iun 4237  df-br 4360  df-opab 4419  df-mpt 4420  df-tr 4455  df-eprel 4700  df-id 4704  df-po 4710  df-so 4711  df-fr 4748  df-se 4749  df-we 4750  df-xp 4795  df-rel 4796  df-cnv 4797  df-co 4798  df-dm 4799  df-rn 4800  df-res 4801  df-ima 4802  df-pred 5335  df-ord 5381  df-on 5382  df-lim 5383  df-suc 5384  df-iota 5501  df-fun 5539  df-fn 5540  df-f 5541  df-f1 5542  df-fo 5543  df-f1o 5544  df-fv 5545  df-isom 5546  df-riota 6204  df-ov 6245  df-oprab 6246  df-mpt2 6247  df-om 6644  df-1st 6744  df-2nd 6745  df-wrecs 6976  df-recs 7038  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-map 7422  df-ixp 7471  df-en 7518  df-dom 7519  df-sdom 7520  df-fin 7521  df-sup 7902  df-inf 7903  df-oi 7971  df-card 8318  df-pnf 9621  df-mnf 9622  df-xr 9623  df-ltxr 9624  df-le 9625  df-sub 9806  df-neg 9807  df-div 10214  df-nn 10554  df-2 10612  df-3 10613  df-4 10614  df-5 10615  df-6 10616  df-7 10617  df-8 10618  df-9 10619  df-10 10620  df-n0 10814  df-z 10882  df-dec 10996  df-uz 11104  df-q 11209  df-rp 11247  df-xneg 11353  df-xadd 11354  df-xmul 11355  df-ico 11585  df-icc 11586  df-fz 11729  df-fzo 11860  df-seq 12157  df-exp 12216  df-hash 12459  df-cj 13099  df-re 13100  df-im 13101  df-sqrt 13235  df-abs 13236  df-clim 13488  df-sum 13689  df-struct 15059  df-ndx 15060  df-slot 15061  df-base 15062  df-sets 15063  df-ress 15064  df-plusg 15139  df-mulr 15140  df-starv 15141  df-sca 15142  df-vsca 15143  df-ip 15144  df-tset 15145  df-ple 15146  df-ds 15148  df-unif 15149  df-hom 15150  df-cco 15151  df-prds 15282  df-pws 15284  df-xmet 18899  df-met 18900  df-cnfld 18907  df-rrn 32059
This theorem is referenced by:  rrntotbnd  32069
  Copyright terms: Public domain W3C validator