Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrnequiv Structured version   Unicode version

Theorem rrnequiv 28734
Description: The supremum metric on  RR ^ I is equivalent to the  Rn metric. (Contributed by Jeff Madsen, 15-Sep-2015.)
Hypotheses
Ref Expression
rrnequiv.y  |-  Y  =  ( (flds  RR )  ^s  I )
rrnequiv.d  |-  D  =  ( dist `  Y
)
rrnequiv.1  |-  X  =  ( RR  ^m  I
)
rrnequiv.i  |-  ( ph  ->  I  e.  Fin )
Assertion
Ref Expression
rrnequiv  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( ( F D G )  <_  ( F ( Rn `  I ) G )  /\  ( F ( Rn `  I ) G )  <_  (
( sqr `  ( # `
 I ) )  x.  ( F D G ) ) ) )

Proof of Theorem rrnequiv
Dummy variables  k 
r  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrnequiv.d . . . . . 6  |-  D  =  ( dist `  Y
)
2 ovex 6116 . . . . . . . 8  |-  (flds  RR )  e.  _V
3 rrnequiv.i . . . . . . . . 9  |-  ( ph  ->  I  e.  Fin )
43adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  I  e.  Fin )
5 rrnequiv.y . . . . . . . . 9  |-  Y  =  ( (flds  RR )  ^s  I )
6 reex 9373 . . . . . . . . . 10  |-  RR  e.  _V
7 eqid 2443 . . . . . . . . . . 11  |-  (flds  RR )  =  (flds  RR )
8 eqid 2443 . . . . . . . . . . 11  |-  (Scalar ` fld )  =  (Scalar ` fld )
97, 8resssca 14316 . . . . . . . . . 10  |-  ( RR  e.  _V  ->  (Scalar ` fld )  =  (Scalar `  (flds  RR )
) )
106, 9ax-mp 5 . . . . . . . . 9  |-  (Scalar ` fld )  =  (Scalar `  (flds  RR ) )
115, 10pwsval 14424 . . . . . . . 8  |-  ( ( (flds  RR )  e.  _V  /\  I  e.  Fin )  ->  Y  =  ( (Scalar ` fld ) X_s ( I  X.  {
(flds  RR ) } ) ) )
122, 4, 11sylancr 663 . . . . . . 7  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  Y  =  ( (Scalar ` fld )
X_s ( I  X.  {
(flds  RR ) } ) ) )
1312fveq2d 5695 . . . . . 6  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( dist `  Y )  =  ( dist `  (
(Scalar ` fld ) X_s ( I  X.  {
(flds  RR ) } ) ) ) )
141, 13syl5eq 2487 . . . . 5  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  D  =  ( dist `  ( (Scalar ` fld ) X_s ( I  X.  {
(flds  RR ) } ) ) ) )
1514oveqd 6108 . . . 4  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( F D G )  =  ( F ( dist `  (
(Scalar ` fld ) X_s ( I  X.  {
(flds  RR ) } ) ) ) G ) )
16 fconstmpt 4882 . . . . . 6  |-  ( I  X.  { (flds  RR ) } )  =  ( k  e.  I  |->  (flds  RR ) )
1716oveq2i 6102 . . . . 5  |-  ( (Scalar ` fld ) X_s ( I  X.  {
(flds  RR ) } ) )  =  ( (Scalar ` fld ) X_s ( k  e.  I  |->  (flds  RR ) ) )
18 eqid 2443 . . . . 5  |-  ( Base `  ( (Scalar ` fld ) X_s ( I  X.  {
(flds  RR ) } ) ) )  =  ( Base `  (
(Scalar ` fld ) X_s ( I  X.  {
(flds  RR ) } ) ) )
19 fvex 5701 . . . . . 6  |-  (Scalar ` fld )  e.  _V
2019a1i 11 . . . . 5  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
(Scalar ` fld )  e.  _V )
212a1i 11 . . . . . 6  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  k  e.  I )  ->  (flds  RR )  e.  _V )
2221ralrimiva 2799 . . . . 5  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  A. k  e.  I 
(flds  RR )  e.  _V )
23 simprl 755 . . . . . 6  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  F  e.  X )
24 rrnequiv.1 . . . . . . 7  |-  X  =  ( RR  ^m  I
)
25 ax-resscn 9339 . . . . . . . . . . 11  |-  RR  C_  CC
26 cnfldbas 17822 . . . . . . . . . . . 12  |-  CC  =  ( Base ` fld )
277, 26ressbas2 14229 . . . . . . . . . . 11  |-  ( RR  C_  CC  ->  RR  =  ( Base `  (flds  RR ) ) )
2825, 27ax-mp 5 . . . . . . . . . 10  |-  RR  =  ( Base `  (flds  RR ) )
295, 28pwsbas 14425 . . . . . . . . 9  |-  ( ( (flds  RR )  e.  _V  /\  I  e.  Fin )  ->  ( RR  ^m  I
)  =  ( Base `  Y ) )
302, 4, 29sylancr 663 . . . . . . . 8  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( RR  ^m  I
)  =  ( Base `  Y ) )
3112fveq2d 5695 . . . . . . . 8  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( Base `  Y )  =  ( Base `  (
(Scalar ` fld ) X_s ( I  X.  {
(flds  RR ) } ) ) ) )
3230, 31eqtrd 2475 . . . . . . 7  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( RR  ^m  I
)  =  ( Base `  ( (Scalar ` fld ) X_s ( I  X.  {
(flds  RR ) } ) ) ) )
3324, 32syl5eq 2487 . . . . . 6  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  X  =  ( Base `  ( (Scalar ` fld ) X_s ( I  X.  {
(flds  RR ) } ) ) ) )
3423, 33eleqtrd 2519 . . . . 5  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  F  e.  ( Base `  ( (Scalar ` fld ) X_s ( I  X.  {
(flds  RR ) } ) ) ) )
35 simprr 756 . . . . . 6  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  G  e.  X )
3635, 33eleqtrd 2519 . . . . 5  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  G  e.  ( Base `  ( (Scalar ` fld ) X_s ( I  X.  {
(flds  RR ) } ) ) ) )
37 cnfldds 17828 . . . . . . . 8  |-  ( abs 
o.  -  )  =  ( dist ` fld )
387, 37ressds 14352 . . . . . . 7  |-  ( RR  e.  _V  ->  ( abs  o.  -  )  =  ( dist `  (flds  RR )
) )
396, 38ax-mp 5 . . . . . 6  |-  ( abs 
o.  -  )  =  ( dist `  (flds  RR ) )
4039reseq1i 5106 . . . . 5  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  =  ( ( dist `  (flds  RR )
)  |`  ( RR  X.  RR ) )
41 eqid 2443 . . . . 5  |-  ( dist `  ( (Scalar ` fld ) X_s ( I  X.  {
(flds  RR ) } ) ) )  =  ( dist `  (
(Scalar ` fld ) X_s ( I  X.  {
(flds  RR ) } ) ) )
4217, 18, 20, 4, 22, 34, 36, 28, 40, 41prdsdsval3 14423 . . . 4  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( F ( dist `  ( (Scalar ` fld ) X_s ( I  X.  {
(flds  RR ) } ) ) ) G )  =  sup ( ( ran  (
k  e.  I  |->  ( ( F `  k
) ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) ( G `  k
) ) )  u. 
{ 0 } ) ,  RR* ,  <  )
)
4315, 42eqtrd 2475 . . 3  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( F D G )  =  sup (
( ran  ( k  e.  I  |->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( G `  k
) ) )  u. 
{ 0 } ) ,  RR* ,  <  )
)
44 eqid 2443 . . . . . . . . . 10  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )
4524, 44rrndstprj1 28729 . . . . . . . . 9  |-  ( ( ( I  e.  Fin  /\  k  e.  I )  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) )  <_  ( F ( Rn `  I ) G ) )
4645an32s 802 . . . . . . . 8  |-  ( ( ( I  e.  Fin  /\  ( F  e.  X  /\  G  e.  X
) )  /\  k  e.  I )  ->  (
( F `  k
) ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) ( G `  k
) )  <_  ( F ( Rn `  I ) G ) )
473, 46sylanl1 650 . . . . . . 7  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  k  e.  I )  ->  (
( F `  k
) ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) ( G `  k
) )  <_  ( F ( Rn `  I ) G ) )
4847ralrimiva 2799 . . . . . 6  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  A. k  e.  I 
( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) )  <_  ( F ( Rn `  I ) G ) )
49 ovex 6116 . . . . . . . 8  |-  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( G `  k
) )  e.  _V
5049rgenw 2783 . . . . . . 7  |-  A. k  e.  I  ( ( F `  k )
( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( G `  k
) )  e.  _V
51 eqid 2443 . . . . . . . 8  |-  ( k  e.  I  |->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( G `  k
) ) )  =  ( k  e.  I  |->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) ) )
52 breq1 4295 . . . . . . . 8  |-  ( z  =  ( ( F `
 k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) )  ->  ( z  <_ 
( F ( Rn
`  I ) G )  <->  ( ( F `
 k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) )  <_  ( F ( Rn `  I ) G ) ) )
5351, 52ralrnmpt 5852 . . . . . . 7  |-  ( A. k  e.  I  (
( F `  k
) ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) ( G `  k
) )  e.  _V  ->  ( A. z  e. 
ran  ( k  e.  I  |->  ( ( F `
 k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) ) ) z  <_  ( F ( Rn `  I ) G )  <->  A. k  e.  I 
( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) )  <_  ( F ( Rn `  I ) G ) ) )
5450, 53ax-mp 5 . . . . . 6  |-  ( A. z  e.  ran  ( k  e.  I  |->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( G `  k
) ) ) z  <_  ( F ( Rn `  I ) G )  <->  A. k  e.  I  ( ( F `  k )
( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( G `  k
) )  <_  ( F ( Rn `  I ) G ) )
5548, 54sylibr 212 . . . . 5  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  A. z  e.  ran  ( k  e.  I  |->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) ) ) z  <_  ( F ( Rn `  I ) G ) )
5624rrnmet 28728 . . . . . . . . 9  |-  ( I  e.  Fin  ->  ( Rn `  I )  e.  ( Met `  X
) )
574, 56syl 16 . . . . . . . 8  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( Rn `  I
)  e.  ( Met `  X ) )
58 metge0 19920 . . . . . . . 8  |-  ( ( ( Rn `  I
)  e.  ( Met `  X )  /\  F  e.  X  /\  G  e.  X )  ->  0  <_  ( F ( Rn
`  I ) G ) )
5957, 23, 35, 58syl3anc 1218 . . . . . . 7  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
0  <_  ( F
( Rn `  I
) G ) )
60 elsni 3902 . . . . . . . 8  |-  ( z  e.  { 0 }  ->  z  =  0 )
6160breq1d 4302 . . . . . . 7  |-  ( z  e.  { 0 }  ->  ( z  <_ 
( F ( Rn
`  I ) G )  <->  0  <_  ( F ( Rn `  I ) G ) ) )
6259, 61syl5ibrcom 222 . . . . . 6  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( z  e.  {
0 }  ->  z  <_  ( F ( Rn
`  I ) G ) ) )
6362ralrimiv 2798 . . . . 5  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  A. z  e.  { 0 } z  <_  ( F ( Rn `  I ) G ) )
64 ralunb 3537 . . . . 5  |-  ( A. z  e.  ( ran  ( k  e.  I  |->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) ) )  u.  { 0 } ) z  <_ 
( F ( Rn
`  I ) G )  <->  ( A. z  e.  ran  ( k  e.  I  |->  ( ( F `
 k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) ) ) z  <_  ( F ( Rn `  I ) G )  /\  A. z  e. 
{ 0 } z  <_  ( F ( Rn `  I ) G ) ) )
6555, 63, 64sylanbrc 664 . . . 4  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  A. z  e.  ( ran  ( k  e.  I  |->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) ) )  u.  { 0 } ) z  <_ 
( F ( Rn
`  I ) G ) )
6617, 18, 20, 4, 22, 28, 34prdsbascl 14421 . . . . . . . . . . 11  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  A. k  e.  I 
( F `  k
)  e.  RR )
6766r19.21bi 2814 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  k  e.  I )  ->  ( F `  k )  e.  RR )
6817, 18, 20, 4, 22, 28, 36prdsbascl 14421 . . . . . . . . . . 11  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  A. k  e.  I 
( G `  k
)  e.  RR )
6968r19.21bi 2814 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  k  e.  I )  ->  ( G `  k )  e.  RR )
7044remet 20367 . . . . . . . . . . 11  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  e.  ( Met `  RR )
71 metcl 19907 . . . . . . . . . . 11  |-  ( ( ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )  e.  ( Met `  RR )  /\  ( F `  k )  e.  RR  /\  ( G `  k
)  e.  RR )  ->  ( ( F `
 k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) )  e.  RR )
7270, 71mp3an1 1301 . . . . . . . . . 10  |-  ( ( ( F `  k
)  e.  RR  /\  ( G `  k )  e.  RR )  -> 
( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) )  e.  RR )
7367, 69, 72syl2anc 661 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  k  e.  I )  ->  (
( F `  k
) ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) ( G `  k
) )  e.  RR )
7473, 51fmptd 5867 . . . . . . . 8  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( k  e.  I  |->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) ) ) : I --> RR )
75 frn 5565 . . . . . . . 8  |-  ( ( k  e.  I  |->  ( ( F `  k
) ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) ( G `  k
) ) ) : I --> RR  ->  ran  ( k  e.  I  |->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) ) )  C_  RR )
7674, 75syl 16 . . . . . . 7  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  ran  ( k  e.  I  |->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) ) )  C_  RR )
77 ressxr 9427 . . . . . . 7  |-  RR  C_  RR*
7876, 77syl6ss 3368 . . . . . 6  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  ran  ( k  e.  I  |->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) ) )  C_  RR* )
79 0xr 9430 . . . . . . . 8  |-  0  e.  RR*
8079a1i 11 . . . . . . 7  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
0  e.  RR* )
8180snssd 4018 . . . . . 6  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  { 0 }  C_  RR* )
8278, 81unssd 3532 . . . . 5  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( ran  ( k  e.  I  |->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( G `  k
) ) )  u. 
{ 0 } ) 
C_  RR* )
83 metcl 19907 . . . . . . 7  |-  ( ( ( Rn `  I
)  e.  ( Met `  X )  /\  F  e.  X  /\  G  e.  X )  ->  ( F ( Rn `  I ) G )  e.  RR )
8457, 23, 35, 83syl3anc 1218 . . . . . 6  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( F ( Rn
`  I ) G )  e.  RR )
8577, 84sseldi 3354 . . . . 5  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( F ( Rn
`  I ) G )  e.  RR* )
86 supxrleub 11289 . . . . 5  |-  ( ( ( ran  ( k  e.  I  |->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( G `  k
) ) )  u. 
{ 0 } ) 
C_  RR*  /\  ( F ( Rn `  I
) G )  e. 
RR* )  ->  ( sup ( ( ran  (
k  e.  I  |->  ( ( F `  k
) ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) ( G `  k
) ) )  u. 
{ 0 } ) ,  RR* ,  <  )  <_  ( F ( Rn
`  I ) G )  <->  A. z  e.  ( ran  ( k  e.  I  |->  ( ( F `
 k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) ) )  u.  { 0 } ) z  <_ 
( F ( Rn
`  I ) G ) ) )
8782, 85, 86syl2anc 661 . . . 4  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( sup ( ( ran  ( k  e.  I  |->  ( ( F `
 k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) ) )  u.  { 0 } ) ,  RR* ,  <  )  <_  ( F ( Rn `  I ) G )  <->  A. z  e.  ( ran  ( k  e.  I  |->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) ) )  u.  { 0 } ) z  <_ 
( F ( Rn
`  I ) G ) ) )
8865, 87mpbird 232 . . 3  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  sup ( ( ran  (
k  e.  I  |->  ( ( F `  k
) ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) ( G `  k
) ) )  u. 
{ 0 } ) ,  RR* ,  <  )  <_  ( F ( Rn
`  I ) G ) )
8943, 88eqbrtrd 4312 . 2  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( F D G )  <_  ( F
( Rn `  I
) G ) )
90 rzal 3781 . . . . . . 7  |-  ( I  =  (/)  ->  A. k  e.  I  ( F `  k )  =  ( G `  k ) )
9123, 24syl6eleq 2533 . . . . . . . . 9  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  F  e.  ( RR  ^m  I ) )
92 elmapi 7234 . . . . . . . . 9  |-  ( F  e.  ( RR  ^m  I )  ->  F : I --> RR )
93 ffn 5559 . . . . . . . . 9  |-  ( F : I --> RR  ->  F  Fn  I )
9491, 92, 933syl 20 . . . . . . . 8  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  F  Fn  I )
9535, 24syl6eleq 2533 . . . . . . . . 9  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  G  e.  ( RR  ^m  I ) )
96 elmapi 7234 . . . . . . . . 9  |-  ( G  e.  ( RR  ^m  I )  ->  G : I --> RR )
97 ffn 5559 . . . . . . . . 9  |-  ( G : I --> RR  ->  G  Fn  I )
9895, 96, 973syl 20 . . . . . . . 8  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  G  Fn  I )
99 eqfnfv 5797 . . . . . . . 8  |-  ( ( F  Fn  I  /\  G  Fn  I )  ->  ( F  =  G  <->  A. k  e.  I 
( F `  k
)  =  ( G `
 k ) ) )
10094, 98, 99syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( F  =  G  <->  A. k  e.  I 
( F `  k
)  =  ( G `
 k ) ) )
10190, 100syl5ibr 221 . . . . . 6  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( I  =  (/)  ->  F  =  G ) )
102101imp 429 . . . . 5  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  I  =  (/) )  ->  F  =  G )
103102oveq1d 6106 . . . 4  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  I  =  (/) )  ->  ( F
( Rn `  I
) G )  =  ( G ( Rn
`  I ) G ) )
104 met0 19918 . . . . . . 7  |-  ( ( ( Rn `  I
)  e.  ( Met `  X )  /\  G  e.  X )  ->  ( G ( Rn `  I ) G )  =  0 )
10557, 35, 104syl2anc 661 . . . . . 6  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( G ( Rn
`  I ) G )  =  0 )
106 hashcl 12126 . . . . . . . . . 10  |-  ( I  e.  Fin  ->  ( # `
 I )  e. 
NN0 )
1074, 106syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( # `  I )  e.  NN0 )
108107nn0red 10637 . . . . . . . 8  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( # `  I )  e.  RR )
109107nn0ge0d 10639 . . . . . . . 8  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
0  <_  ( # `  I
) )
110108, 109resqrcld 12904 . . . . . . 7  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( sqr `  ( # `
 I ) )  e.  RR )
1115, 1, 24repwsmet 28733 . . . . . . . . 9  |-  ( I  e.  Fin  ->  D  e.  ( Met `  X
) )
1124, 111syl 16 . . . . . . . 8  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  ->  D  e.  ( Met `  X ) )
113 metcl 19907 . . . . . . . 8  |-  ( ( D  e.  ( Met `  X )  /\  F  e.  X  /\  G  e.  X )  ->  ( F D G )  e.  RR )
114112, 23, 35, 113syl3anc 1218 . . . . . . 7  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( F D G )  e.  RR )
115108, 109sqrge0d 12907 . . . . . . 7  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
0  <_  ( sqr `  ( # `  I
) ) )
116 metge0 19920 . . . . . . . 8  |-  ( ( D  e.  ( Met `  X )  /\  F  e.  X  /\  G  e.  X )  ->  0  <_  ( F D G ) )
117112, 23, 35, 116syl3anc 1218 . . . . . . 7  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
0  <_  ( F D G ) )
118110, 114, 115, 117mulge0d 9916 . . . . . 6  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
0  <_  ( ( sqr `  ( # `  I
) )  x.  ( F D G ) ) )
119105, 118eqbrtrd 4312 . . . . 5  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( G ( Rn
`  I ) G )  <_  ( ( sqr `  ( # `  I
) )  x.  ( F D G ) ) )
120119adantr 465 . . . 4  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  I  =  (/) )  ->  ( G
( Rn `  I
) G )  <_ 
( ( sqr `  ( # `
 I ) )  x.  ( F D G ) ) )
121103, 120eqbrtrd 4312 . . 3  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  I  =  (/) )  ->  ( F
( Rn `  I
) G )  <_ 
( ( sqr `  ( # `
 I ) )  x.  ( F D G ) ) )
12284adantr 465 . . . . . . 7  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  ( F ( Rn `  I ) G )  e.  RR )
123110, 114remulcld 9414 . . . . . . . . 9  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( ( sqr `  ( # `
 I ) )  x.  ( F D G ) )  e.  RR )
124123adantr 465 . . . . . . . 8  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  (
( sqr `  ( # `
 I ) )  x.  ( F D G ) )  e.  RR )
125 rpre 10997 . . . . . . . . 9  |-  ( r  e.  RR+  ->  r  e.  RR )
126125ad2antll 728 . . . . . . . 8  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  r  e.  RR )
127124, 126readdcld 9413 . . . . . . 7  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  (
( ( sqr `  ( # `
 I ) )  x.  ( F D G ) )  +  r )  e.  RR )
1284adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  I  e.  Fin )
129 simprl 755 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  I  =/=  (/) )
130 eldifsn 4000 . . . . . . . . . 10  |-  ( I  e.  ( Fin  \  { (/)
} )  <->  ( I  e.  Fin  /\  I  =/=  (/) ) )
131128, 129, 130sylanbrc 664 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  I  e.  ( Fin  \  { (/)
} ) )
13223adantr 465 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  F  e.  X )
13335adantr 465 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  G  e.  X )
134114adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  ( F D G )  e.  RR )
135 simprr 756 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  r  e.  RR+ )
136 hashnncl 12134 . . . . . . . . . . . . . . . . 17  |-  ( I  e.  Fin  ->  (
( # `  I )  e.  NN  <->  I  =/=  (/) ) )
137128, 136syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  (
( # `  I )  e.  NN  <->  I  =/=  (/) ) )
138129, 137mpbird 232 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  ( # `
 I )  e.  NN )
139138nnrpd 11026 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  ( # `
 I )  e.  RR+ )
140139rpsqrcld 12898 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  ( sqr `  ( # `  I
) )  e.  RR+ )
141135, 140rpdivcld 11044 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  (
r  /  ( sqr `  ( # `  I
) ) )  e.  RR+ )
142141rpred 11027 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  (
r  /  ( sqr `  ( # `  I
) ) )  e.  RR )
143134, 142readdcld 9413 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  (
( F D G )  +  ( r  /  ( sqr `  ( # `
 I ) ) ) )  e.  RR )
144 0re 9386 . . . . . . . . . . . 12  |-  0  e.  RR
145144a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  0  e.  RR )
146117adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  0  <_  ( F D G ) )
147134, 141ltaddrpd 11056 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  ( F D G )  < 
( ( F D G )  +  ( r  /  ( sqr `  ( # `  I
) ) ) ) )
148145, 134, 143, 146, 147lelttrd 9529 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  0  <  ( ( F D G )  +  ( r  /  ( sqr `  ( # `  I
) ) ) ) )
149143, 148elrpd 11025 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  (
( F D G )  +  ( r  /  ( sqr `  ( # `
 I ) ) ) )  e.  RR+ )
15073adantlr 714 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X
) )  /\  (
I  =/=  (/)  /\  r  e.  RR+ ) )  /\  k  e.  I )  ->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) )  e.  RR )
151134adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X
) )  /\  (
I  =/=  (/)  /\  r  e.  RR+ ) )  /\  k  e.  I )  ->  ( F D G )  e.  RR )
152143adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X
) )  /\  (
I  =/=  (/)  /\  r  e.  RR+ ) )  /\  k  e.  I )  ->  ( ( F D G )  +  ( r  /  ( sqr `  ( # `  I
) ) ) )  e.  RR )
15382ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X
) )  /\  (
I  =/=  (/)  /\  r  e.  RR+ ) )  /\  k  e.  I )  ->  ( ran  ( k  e.  I  |->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( G `  k
) ) )  u. 
{ 0 } ) 
C_  RR* )
154 ssun1 3519 . . . . . . . . . . . . . 14  |-  ran  (
k  e.  I  |->  ( ( F `  k
) ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) ( G `  k
) ) )  C_  ( ran  ( k  e.  I  |->  ( ( F `
 k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) ) )  u.  { 0 } )
155 simpr 461 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X
) )  /\  (
I  =/=  (/)  /\  r  e.  RR+ ) )  /\  k  e.  I )  ->  k  e.  I )
15651elrnmpt1 5088 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  I  /\  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) )  e.  _V )  -> 
( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) )  e.  ran  ( k  e.  I  |->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( G `  k
) ) ) )
157155, 49, 156sylancl 662 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X
) )  /\  (
I  =/=  (/)  /\  r  e.  RR+ ) )  /\  k  e.  I )  ->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) )  e.  ran  ( k  e.  I  |->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( G `  k
) ) ) )
158154, 157sseldi 3354 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X
) )  /\  (
I  =/=  (/)  /\  r  e.  RR+ ) )  /\  k  e.  I )  ->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) )  e.  ( ran  (
k  e.  I  |->  ( ( F `  k
) ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) ( G `  k
) ) )  u. 
{ 0 } ) )
159 supxrub 11287 . . . . . . . . . . . . 13  |-  ( ( ( ran  ( k  e.  I  |->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( G `  k
) ) )  u. 
{ 0 } ) 
C_  RR*  /\  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( G `  k
) )  e.  ( ran  ( k  e.  I  |->  ( ( F `
 k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) ) )  u.  { 0 } ) )  -> 
( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) )  <_  sup ( ( ran  ( k  e.  I  |->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )
160153, 158, 159syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X
) )  /\  (
I  =/=  (/)  /\  r  e.  RR+ ) )  /\  k  e.  I )  ->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) )  <_  sup ( ( ran  ( k  e.  I  |->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )
16143ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X
) )  /\  (
I  =/=  (/)  /\  r  e.  RR+ ) )  /\  k  e.  I )  ->  ( F D G )  =  sup (
( ran  ( k  e.  I  |->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( G `  k
) ) )  u. 
{ 0 } ) ,  RR* ,  <  )
)
162160, 161breqtrrd 4318 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X
) )  /\  (
I  =/=  (/)  /\  r  e.  RR+ ) )  /\  k  e.  I )  ->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) )  <_  ( F D G ) )
163147adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X
) )  /\  (
I  =/=  (/)  /\  r  e.  RR+ ) )  /\  k  e.  I )  ->  ( F D G )  <  ( ( F D G )  +  ( r  / 
( sqr `  ( # `
 I ) ) ) ) )
164150, 151, 152, 162, 163lelttrd 9529 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X
) )  /\  (
I  =/=  (/)  /\  r  e.  RR+ ) )  /\  k  e.  I )  ->  ( ( F `  k ) ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ( G `
 k ) )  <  ( ( F D G )  +  ( r  /  ( sqr `  ( # `  I
) ) ) ) )
165164ralrimiva 2799 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  A. k  e.  I  ( ( F `  k )
( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( G `  k
) )  <  (
( F D G )  +  ( r  /  ( sqr `  ( # `
 I ) ) ) ) )
16624, 44rrndstprj2 28730 . . . . . . . . 9  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  (
( ( F D G )  +  ( r  /  ( sqr `  ( # `  I
) ) ) )  e.  RR+  /\  A. k  e.  I  ( ( F `  k )
( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ( G `  k
) )  <  (
( F D G )  +  ( r  /  ( sqr `  ( # `
 I ) ) ) ) ) )  ->  ( F ( Rn `  I ) G )  <  (
( ( F D G )  +  ( r  /  ( sqr `  ( # `  I
) ) ) )  x.  ( sqr `  ( # `
 I ) ) ) )
167131, 132, 133, 149, 165, 166syl32anc 1226 . . . . . . . 8  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  ( F ( Rn `  I ) G )  <  ( ( ( F D G )  +  ( r  / 
( sqr `  ( # `
 I ) ) ) )  x.  ( sqr `  ( # `  I
) ) ) )
168134recnd 9412 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  ( F D G )  e.  CC )
169142recnd 9412 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  (
r  /  ( sqr `  ( # `  I
) ) )  e.  CC )
170110adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  ( sqr `  ( # `  I
) )  e.  RR )
171170recnd 9412 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  ( sqr `  ( # `  I
) )  e.  CC )
172168, 169, 171adddird 9411 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  (
( ( F D G )  +  ( r  /  ( sqr `  ( # `  I
) ) ) )  x.  ( sqr `  ( # `
 I ) ) )  =  ( ( ( F D G )  x.  ( sqr `  ( # `  I
) ) )  +  ( ( r  / 
( sqr `  ( # `
 I ) ) )  x.  ( sqr `  ( # `  I
) ) ) ) )
173168, 171mulcomd 9407 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  (
( F D G )  x.  ( sqr `  ( # `  I
) ) )  =  ( ( sqr `  ( # `
 I ) )  x.  ( F D G ) ) )
174126recnd 9412 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  r  e.  CC )
175140rpne0d 11032 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  ( sqr `  ( # `  I
) )  =/=  0
)
176174, 171, 175divcan1d 10108 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  (
( r  /  ( sqr `  ( # `  I
) ) )  x.  ( sqr `  ( # `
 I ) ) )  =  r )
177173, 176oveq12d 6109 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  (
( ( F D G )  x.  ( sqr `  ( # `  I
) ) )  +  ( ( r  / 
( sqr `  ( # `
 I ) ) )  x.  ( sqr `  ( # `  I
) ) ) )  =  ( ( ( sqr `  ( # `  I ) )  x.  ( F D G ) )  +  r ) )
178172, 177eqtrd 2475 . . . . . . . 8  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  (
( ( F D G )  +  ( r  /  ( sqr `  ( # `  I
) ) ) )  x.  ( sqr `  ( # `
 I ) ) )  =  ( ( ( sqr `  ( # `
 I ) )  x.  ( F D G ) )  +  r ) )
179167, 178breqtrd 4316 . . . . . . 7  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  ( F ( Rn `  I ) G )  <  ( ( ( sqr `  ( # `  I ) )  x.  ( F D G ) )  +  r ) )
180122, 127, 179ltled 9522 . . . . . 6  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  ( I  =/=  (/)  /\  r  e.  RR+ ) )  ->  ( F ( Rn `  I ) G )  <_  ( ( ( sqr `  ( # `  I ) )  x.  ( F D G ) )  +  r ) )
181180anassrs 648 . . . . 5  |-  ( ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X
) )  /\  I  =/=  (/) )  /\  r  e.  RR+ )  ->  ( F ( Rn `  I ) G )  <_  ( ( ( sqr `  ( # `  I ) )  x.  ( F D G ) )  +  r ) )
182181ralrimiva 2799 . . . 4  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  I  =/=  (/) )  ->  A. r  e.  RR+  ( F ( Rn `  I ) G )  <_  (
( ( sqr `  ( # `
 I ) )  x.  ( F D G ) )  +  r ) )
183 alrple 11176 . . . . . 6  |-  ( ( ( F ( Rn
`  I ) G )  e.  RR  /\  ( ( sqr `  ( # `
 I ) )  x.  ( F D G ) )  e.  RR )  ->  (
( F ( Rn
`  I ) G )  <_  ( ( sqr `  ( # `  I
) )  x.  ( F D G ) )  <->  A. r  e.  RR+  ( F ( Rn `  I ) G )  <_  ( ( ( sqr `  ( # `  I ) )  x.  ( F D G ) )  +  r ) ) )
18484, 123, 183syl2anc 661 . . . . 5  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( ( F ( Rn `  I ) G )  <_  (
( sqr `  ( # `
 I ) )  x.  ( F D G ) )  <->  A. r  e.  RR+  ( F ( Rn `  I ) G )  <_  (
( ( sqr `  ( # `
 I ) )  x.  ( F D G ) )  +  r ) ) )
185184adantr 465 . . . 4  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  I  =/=  (/) )  ->  ( ( F ( Rn `  I ) G )  <_  ( ( sqr `  ( # `  I
) )  x.  ( F D G ) )  <->  A. r  e.  RR+  ( F ( Rn `  I ) G )  <_  ( ( ( sqr `  ( # `  I ) )  x.  ( F D G ) )  +  r ) ) )
186182, 185mpbird 232 . . 3  |-  ( ( ( ph  /\  ( F  e.  X  /\  G  e.  X )
)  /\  I  =/=  (/) )  ->  ( F
( Rn `  I
) G )  <_ 
( ( sqr `  ( # `
 I ) )  x.  ( F D G ) ) )
187121, 186pm2.61dane 2689 . 2  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( F ( Rn
`  I ) G )  <_  ( ( sqr `  ( # `  I
) )  x.  ( F D G ) ) )
18889, 187jca 532 1  |-  ( (
ph  /\  ( F  e.  X  /\  G  e.  X ) )  -> 
( ( F D G )  <_  ( F ( Rn `  I ) G )  /\  ( F ( Rn `  I ) G )  <_  (
( sqr `  ( # `
 I ) )  x.  ( F D G ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2606   A.wral 2715   _Vcvv 2972    \ cdif 3325    u. cun 3326    C_ wss 3328   (/)c0 3637   {csn 3877   class class class wbr 4292    e. cmpt 4350    X. cxp 4838   ran crn 4841    |` cres 4842    o. ccom 4844    Fn wfn 5413   -->wf 5414   ` cfv 5418  (class class class)co 6091    ^m cmap 7214   Fincfn 7310   supcsup 7690   CCcc 9280   RRcr 9281   0cc0 9282    + caddc 9285    x. cmul 9287   RR*cxr 9417    < clt 9418    <_ cle 9419    - cmin 9595    / cdiv 9993   NNcn 10322   NN0cn0 10579   RR+crp 10991   #chash 12103   sqrcsqr 12722   abscabs 12723   Basecbs 14174   ↾s cress 14175  Scalarcsca 14241   distcds 14247   X_scprds 14384    ^s cpws 14385   Metcme 17802  ℂfldccnfld 17818   Rncrrn 28724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-inf2 7847  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359  ax-pre-sup 9360
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-se 4680  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-isom 5427  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-1o 6920  df-oadd 6924  df-er 7101  df-map 7216  df-ixp 7264  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-sup 7691  df-oi 7724  df-card 8109  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-div 9994  df-nn 10323  df-2 10380  df-3 10381  df-4 10382  df-5 10383  df-6 10384  df-7 10385  df-8 10386  df-9 10387  df-10 10388  df-n0 10580  df-z 10647  df-dec 10756  df-uz 10862  df-q 10954  df-rp 10992  df-xneg 11089  df-xadd 11090  df-xmul 11091  df-ico 11306  df-icc 11307  df-fz 11438  df-fzo 11549  df-seq 11807  df-exp 11866  df-hash 12104  df-cj 12588  df-re 12589  df-im 12590  df-sqr 12724  df-abs 12725  df-clim 12966  df-sum 13164  df-struct 14176  df-ndx 14177  df-slot 14178  df-base 14179  df-sets 14180  df-ress 14181  df-plusg 14251  df-mulr 14252  df-starv 14253  df-sca 14254  df-vsca 14255  df-ip 14256  df-tset 14257  df-ple 14258  df-ds 14260  df-unif 14261  df-hom 14262  df-cco 14263  df-prds 14386  df-pws 14388  df-xmet 17810  df-met 17811  df-cnfld 17819  df-rrn 28725
This theorem is referenced by:  rrntotbnd  28735
  Copyright terms: Public domain W3C validator