Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrncmslem Structured version   Unicode version

Theorem rrncmslem 32065
Description: Lemma for rrncms 32066. (Contributed by Jeff Madsen, 6-Jun-2014.) (Revised by Mario Carneiro, 13-Sep-2015.)
Hypotheses
Ref Expression
rrnval.1  |-  X  =  ( RR  ^m  I
)
rrndstprj1.1  |-  M  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
rrncms.3  |-  J  =  ( MetOpen `  ( Rn `  I ) )
rrncms.4  |-  ( ph  ->  I  e.  Fin )
rrncms.5  |-  ( ph  ->  F  e.  ( Cau `  ( Rn `  I
) ) )
rrncms.6  |-  ( ph  ->  F : NN --> X )
rrncms.7  |-  P  =  ( m  e.  I  |->  (  ~~>  `  ( t  e.  NN  |->  ( ( F `
 t ) `  m ) ) ) )
Assertion
Ref Expression
rrncmslem  |-  ( ph  ->  F  e.  dom  ( ~~> t `  J )
)
Distinct variable groups:    m, I    t, m, F
Allowed substitution hints:    ph( t, m)    P( t, m)    I( t)    J( t, m)    M( t, m)    X( t, m)

Proof of Theorem rrncmslem
Dummy variables  k  n  x  y  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmrel 20181 . 2  |-  Rel  ( ~~> t `  J )
2 fvex 5828 . . . . . . . 8  |-  (  ~~>  `  (
t  e.  NN  |->  ( ( F `  t
) `  m )
) )  e.  _V
3 rrncms.7 . . . . . . . 8  |-  P  =  ( m  e.  I  |->  (  ~~>  `  ( t  e.  NN  |->  ( ( F `
 t ) `  m ) ) ) )
42, 3fnmpti 5660 . . . . . . 7  |-  P  Fn  I
54a1i 11 . . . . . 6  |-  ( ph  ->  P  Fn  I )
6 nnuz 11138 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
7 1zzd 10912 . . . . . . . 8  |-  ( (
ph  /\  n  e.  I )  ->  1  e.  ZZ )
8 fveq2 5818 . . . . . . . . . . . . . . . 16  |-  ( t  =  k  ->  ( F `  t )  =  ( F `  k ) )
98fveq1d 5820 . . . . . . . . . . . . . . 15  |-  ( t  =  k  ->  (
( F `  t
) `  n )  =  ( ( F `
 k ) `  n ) )
10 eqid 2422 . . . . . . . . . . . . . . 15  |-  ( t  e.  NN  |->  ( ( F `  t ) `
 n ) )  =  ( t  e.  NN  |->  ( ( F `
 t ) `  n ) )
11 fvex 5828 . . . . . . . . . . . . . . 15  |-  ( ( F `  k ) `
 n )  e. 
_V
129, 10, 11fvmpt 5901 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  k
)  =  ( ( F `  k ) `
 n ) )
1312adantl 467 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  I )  /\  k  e.  NN )  ->  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  k
)  =  ( ( F `  k ) `
 n ) )
14 rrncms.6 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  F : NN --> X )
1514ffvelrnda 5974 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  X )
16 rrnval.1 . . . . . . . . . . . . . . . . 17  |-  X  =  ( RR  ^m  I
)
1715, 16syl6eleq 2510 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  ( RR  ^m  I
) )
18 elmapi 7441 . . . . . . . . . . . . . . . 16  |-  ( ( F `  k )  e.  ( RR  ^m  I )  ->  ( F `  k ) : I --> RR )
1917, 18syl 17 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k ) : I --> RR )
2019ffvelrnda 5974 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  I )  ->  (
( F `  k
) `  n )  e.  RR )
2120an32s 811 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  I )  /\  k  e.  NN )  ->  (
( F `  k
) `  n )  e.  RR )
2213, 21eqeltrd 2500 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  I )  /\  k  e.  NN )  ->  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  k
)  e.  RR )
2322recnd 9613 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  I )  /\  k  e.  NN )  ->  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  k
)  e.  CC )
24 rrncms.5 . . . . . . . . . . . . . 14  |-  ( ph  ->  F  e.  ( Cau `  ( Rn `  I
) ) )
25 rrncms.4 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  I  e.  Fin )
2616rrnmet 32062 . . . . . . . . . . . . . . . . 17  |-  ( I  e.  Fin  ->  ( Rn `  I )  e.  ( Met `  X
) )
2725, 26syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( Rn `  I
)  e.  ( Met `  X ) )
28 metxmet 21284 . . . . . . . . . . . . . . . 16  |-  ( ( Rn `  I )  e.  ( Met `  X
)  ->  ( Rn `  I )  e.  ( *Met `  X
) )
2927, 28syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( Rn `  I
)  e.  ( *Met `  X ) )
30 1zzd 10912 . . . . . . . . . . . . . . 15  |-  ( ph  ->  1  e.  ZZ )
31 eqidd 2423 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  =  ( F `  k
) )
32 eqidd 2423 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  j  e.  NN )  ->  ( F `
 j )  =  ( F `  j
) )
336, 29, 30, 31, 32, 14iscauf 22185 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F  e.  ( Cau `  ( Rn
`  I ) )  <->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  j ) ( Rn
`  I ) ( F `  k ) )  <  x ) )
3424, 33mpbid 213 . . . . . . . . . . . . 13  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  j ) ( Rn `  I
) ( F `  k ) )  < 
x )
3534adantr 466 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  I )  ->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  j ) ( Rn
`  I ) ( F `  k ) )  <  x )
3625ad3antrrr 734 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  I  e.  Fin )
37 simpllr 767 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  n  e.  I
)
3814ad3antrrr 734 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  F : NN --> X )
39 eluznn 11173 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  NN )
4039adantll 718 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  k  e.  NN )
4138, 40ffvelrnd 5975 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( F `  k )  e.  X
)
42 simplr 760 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  j  e.  NN )
4338, 42ffvelrnd 5975 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( F `  j )  e.  X
)
44 rrndstprj1.1 . . . . . . . . . . . . . . . . . . . . 21  |-  M  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
4516, 44rrndstprj1 32063 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( I  e.  Fin  /\  n  e.  I )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 j )  e.  X ) )  -> 
( ( ( F `
 k ) `  n ) M ( ( F `  j
) `  n )
)  <_  ( ( F `  k )
( Rn `  I
) ( F `  j ) ) )
4636, 37, 41, 43, 45syl22anc 1265 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( F `  k ) `
 n ) M ( ( F `  j ) `  n
) )  <_  (
( F `  k
) ( Rn `  I ) ( F `
 j ) ) )
4727ad3antrrr 734 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( Rn `  I )  e.  ( Met `  X ) )
48 metsym 21300 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( Rn `  I
)  e.  ( Met `  X )  /\  ( F `  k )  e.  X  /\  ( F `  j )  e.  X )  ->  (
( F `  k
) ( Rn `  I ) ( F `
 j ) )  =  ( ( F `
 j ) ( Rn `  I ) ( F `  k
) ) )
4947, 41, 43, 48syl3anc 1264 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( F `
 k ) ( Rn `  I ) ( F `  j
) )  =  ( ( F `  j
) ( Rn `  I ) ( F `
 k ) ) )
5046, 49breqtrd 4384 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( F `  k ) `
 n ) M ( ( F `  j ) `  n
) )  <_  (
( F `  j
) ( Rn `  I ) ( F `
 k ) ) )
5150adantllr 723 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  n  e.  I )  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( F `  k ) `
 n ) M ( ( F `  j ) `  n
) )  <_  (
( F `  j
) ( Rn `  I ) ( F `
 k ) ) )
5244remet 21743 . . . . . . . . . . . . . . . . . . . . 21  |-  M  e.  ( Met `  RR )
5352a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  M  e.  ( Met `  RR ) )
54 simpll 758 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ph  /\  n  e.  I )
)
5554, 40, 21syl2anc 665 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( F `
 k ) `  n )  e.  RR )
5614ffvelrnda 5974 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  j  e.  NN )  ->  ( F `
 j )  e.  X )
5756, 16syl6eleq 2510 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  j  e.  NN )  ->  ( F `
 j )  e.  ( RR  ^m  I
) )
58 elmapi 7441 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( F `  j )  e.  ( RR  ^m  I )  ->  ( F `  j ) : I --> RR )
5957, 58syl 17 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  j  e.  NN )  ->  ( F `
 j ) : I --> RR )
6059ffvelrnda 5974 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  j  e.  NN )  /\  n  e.  I )  ->  (
( F `  j
) `  n )  e.  RR )
6160an32s 811 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  ->  (
( F `  j
) `  n )  e.  RR )
6261adantr 466 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( F `
 j ) `  n )  e.  RR )
63 metcl 21282 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( M  e.  ( Met `  RR )  /\  (
( F `  k
) `  n )  e.  RR  /\  ( ( F `  j ) `
 n )  e.  RR )  ->  (
( ( F `  k ) `  n
) M ( ( F `  j ) `
 n ) )  e.  RR )
6453, 55, 62, 63syl3anc 1264 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( F `  k ) `
 n ) M ( ( F `  j ) `  n
) )  e.  RR )
6564adantllr 723 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  n  e.  I )  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( F `  k ) `
 n ) M ( ( F `  j ) `  n
) )  e.  RR )
66 metcl 21282 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( Rn `  I
)  e.  ( Met `  X )  /\  ( F `  j )  e.  X  /\  ( F `  k )  e.  X )  ->  (
( F `  j
) ( Rn `  I ) ( F `
 k ) )  e.  RR )
6747, 43, 41, 66syl3anc 1264 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( F `
 j ) ( Rn `  I ) ( F `  k
) )  e.  RR )
6867adantllr 723 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  n  e.  I )  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( F `
 j ) ( Rn `  I ) ( F `  k
) )  e.  RR )
69 rpre 11252 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  RR+  ->  x  e.  RR )
7069adantl 467 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  n  e.  I )  /\  x  e.  RR+ )  ->  x  e.  RR )
7170ad2antrr 730 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  n  e.  I )  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  x  e.  RR )
72 lelttr 9668 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( F `
 k ) `  n ) M ( ( F `  j
) `  n )
)  e.  RR  /\  ( ( F `  j ) ( Rn
`  I ) ( F `  k ) )  e.  RR  /\  x  e.  RR )  ->  ( ( ( ( ( F `  k
) `  n ) M ( ( F `
 j ) `  n ) )  <_ 
( ( F `  j ) ( Rn
`  I ) ( F `  k ) )  /\  ( ( F `  j ) ( Rn `  I
) ( F `  k ) )  < 
x )  ->  (
( ( F `  k ) `  n
) M ( ( F `  j ) `
 n ) )  <  x ) )
7365, 68, 71, 72syl3anc 1264 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  n  e.  I )  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( ( ( F `  k ) `  n
) M ( ( F `  j ) `
 n ) )  <_  ( ( F `
 j ) ( Rn `  I ) ( F `  k
) )  /\  (
( F `  j
) ( Rn `  I ) ( F `
 k ) )  <  x )  -> 
( ( ( F `
 k ) `  n ) M ( ( F `  j
) `  n )
)  <  x )
)
7451, 73mpand 679 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  n  e.  I )  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( F `  j ) ( Rn `  I
) ( F `  k ) )  < 
x  ->  ( (
( F `  k
) `  n ) M ( ( F `
 j ) `  n ) )  < 
x ) )
7574ralimdva 2767 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  n  e.  I )  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  j )
( ( F `  j ) ( Rn
`  I ) ( F `  k ) )  <  x  ->  A. k  e.  ( ZZ>=
`  j ) ( ( ( F `  k ) `  n
) M ( ( F `  j ) `
 n ) )  <  x ) )
7675reximdva 2833 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  I )  /\  x  e.  RR+ )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  j ) ( Rn `  I
) ( F `  k ) )  < 
x  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( ( F `  j
) `  n )
)  <  x )
)
7776ralimdva 2767 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  I )  ->  ( A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  j ) ( Rn
`  I ) ( F `  k ) )  <  x  ->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( ( F `  j
) `  n )
)  <  x )
)
7844remetdval 21742 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( F `  k ) `  n
)  e.  RR  /\  ( ( F `  j ) `  n
)  e.  RR )  ->  ( ( ( F `  k ) `
 n ) M ( ( F `  j ) `  n
) )  =  ( abs `  ( ( ( F `  k
) `  n )  -  ( ( F `
 j ) `  n ) ) ) )
7955, 62, 78syl2anc 665 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( F `  k ) `
 n ) M ( ( F `  j ) `  n
) )  =  ( abs `  ( ( ( F `  k
) `  n )  -  ( ( F `
 j ) `  n ) ) ) )
8040, 12syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( t  e.  NN  |->  ( ( F `  t ) `
 n ) ) `
 k )  =  ( ( F `  k ) `  n
) )
81 fveq2 5818 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( t  =  j  ->  ( F `  t )  =  ( F `  j ) )
8281fveq1d 5820 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( t  =  j  ->  (
( F `  t
) `  n )  =  ( ( F `
 j ) `  n ) )
83 fvex 5828 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( F `  j ) `
 n )  e. 
_V
8482, 10, 83fvmpt 5901 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  e.  NN  ->  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  j
)  =  ( ( F `  j ) `
 n ) )
8584ad2antlr 731 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( t  e.  NN  |->  ( ( F `  t ) `
 n ) ) `
 j )  =  ( ( F `  j ) `  n
) )
8680, 85oveq12d 6260 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( t  e.  NN  |->  ( ( F `  t
) `  n )
) `  k )  -  ( ( t  e.  NN  |->  ( ( F `  t ) `
 n ) ) `
 j ) )  =  ( ( ( F `  k ) `
 n )  -  ( ( F `  j ) `  n
) ) )
8786fveq2d 5822 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( abs `  (
( ( t  e.  NN  |->  ( ( F `
 t ) `  n ) ) `  k )  -  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  j
) ) )  =  ( abs `  (
( ( F `  k ) `  n
)  -  ( ( F `  j ) `
 n ) ) ) )
8879, 87eqtr4d 2459 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( F `  k ) `
 n ) M ( ( F `  j ) `  n
) )  =  ( abs `  ( ( ( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  k
)  -  ( ( t  e.  NN  |->  ( ( F `  t
) `  n )
) `  j )
) ) )
8988breq1d 4369 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( ( F `  k
) `  n ) M ( ( F `
 j ) `  n ) )  < 
x  <->  ( abs `  (
( ( t  e.  NN  |->  ( ( F `
 t ) `  n ) ) `  k )  -  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  j
) ) )  < 
x ) )
9089ralbidva 2795 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( ( F `  k ) `  n
) M ( ( F `  j ) `
 n ) )  <  x  <->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( ( t  e.  NN  |->  ( ( F `
 t ) `  n ) ) `  k )  -  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  j
) ) )  < 
x ) )
9190rexbidva 2869 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  I )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( ( F `  k
) `  n ) M ( ( F `
 j ) `  n ) )  < 
x  <->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( ( t  e.  NN  |->  ( ( F `  t ) `
 n ) ) `
 k )  -  ( ( t  e.  NN  |->  ( ( F `
 t ) `  n ) ) `  j ) ) )  <  x ) )
9291ralbidv 2798 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  I )  ->  ( A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( ( F `  j
) `  n )
)  <  x  <->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( abs `  (
( ( t  e.  NN  |->  ( ( F `
 t ) `  n ) ) `  k )  -  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  j
) ) )  < 
x ) )
9377, 92sylibd 217 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  I )  ->  ( A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  j ) ( Rn
`  I ) ( F `  k ) )  <  x  ->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( abs `  (
( ( t  e.  NN  |->  ( ( F `
 t ) `  n ) ) `  k )  -  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  j
) ) )  < 
x ) )
9435, 93mpd 15 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( abs `  (
( ( t  e.  NN  |->  ( ( F `
 t ) `  n ) ) `  k )  -  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  j
) ) )  < 
x )
95 nnex 10559 . . . . . . . . . . . . 13  |-  NN  e.  _V
9695mptex 6088 . . . . . . . . . . . 12  |-  ( t  e.  NN  |->  ( ( F `  t ) `
 n ) )  e.  _V
9796a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  (
t  e.  NN  |->  ( ( F `  t
) `  n )
)  e.  _V )
986, 23, 94, 97caucvg 13681 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  I )  ->  (
t  e.  NN  |->  ( ( F `  t
) `  n )
)  e.  dom  ~~>  )
99 climdm 13554 . . . . . . . . . 10  |-  ( ( t  e.  NN  |->  ( ( F `  t
) `  n )
)  e.  dom  ~~>  <->  ( t  e.  NN  |->  ( ( F `
 t ) `  n ) )  ~~>  (  ~~>  `  (
t  e.  NN  |->  ( ( F `  t
) `  n )
) ) )
10098, 99sylib 199 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  I )  ->  (
t  e.  NN  |->  ( ( F `  t
) `  n )
)  ~~>  (  ~~>  `  (
t  e.  NN  |->  ( ( F `  t
) `  n )
) ) )
101 fveq2 5818 . . . . . . . . . . . . 13  |-  ( m  =  n  ->  (
( F `  t
) `  m )  =  ( ( F `
 t ) `  n ) )
102101mpteq2dv 4447 . . . . . . . . . . . 12  |-  ( m  =  n  ->  (
t  e.  NN  |->  ( ( F `  t
) `  m )
)  =  ( t  e.  NN  |->  ( ( F `  t ) `
 n ) ) )
103102fveq2d 5822 . . . . . . . . . . 11  |-  ( m  =  n  ->  (  ~~>  `  ( t  e.  NN  |->  ( ( F `  t ) `  m
) ) )  =  (  ~~>  `  ( t  e.  NN  |->  ( ( F `
 t ) `  n ) ) ) )
104 fvex 5828 . . . . . . . . . . 11  |-  (  ~~>  `  (
t  e.  NN  |->  ( ( F `  t
) `  n )
) )  e.  _V
105103, 3, 104fvmpt 5901 . . . . . . . . . 10  |-  ( n  e.  I  ->  ( P `  n )  =  (  ~~>  `  ( t  e.  NN  |->  ( ( F `  t ) `
 n ) ) ) )
106105adantl 467 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  I )  ->  ( P `  n )  =  (  ~~>  `  ( t  e.  NN  |->  ( ( F `  t ) `
 n ) ) ) )
107100, 106breqtrrd 4386 . . . . . . . 8  |-  ( (
ph  /\  n  e.  I )  ->  (
t  e.  NN  |->  ( ( F `  t
) `  n )
)  ~~>  ( P `  n ) )
1086, 7, 107, 22climrecl 13583 . . . . . . 7  |-  ( (
ph  /\  n  e.  I )  ->  ( P `  n )  e.  RR )
109108ralrimiva 2773 . . . . . 6  |-  ( ph  ->  A. n  e.  I 
( P `  n
)  e.  RR )
110 ffnfv 6001 . . . . . 6  |-  ( P : I --> RR  <->  ( P  Fn  I  /\  A. n  e.  I  ( P `  n )  e.  RR ) )
1115, 109, 110sylanbrc 668 . . . . 5  |-  ( ph  ->  P : I --> RR )
112 reex 9574 . . . . . 6  |-  RR  e.  _V
113 elmapg 7433 . . . . . 6  |-  ( ( RR  e.  _V  /\  I  e.  Fin )  ->  ( P  e.  ( RR  ^m  I )  <-> 
P : I --> RR ) )
114112, 25, 113sylancr 667 . . . . 5  |-  ( ph  ->  ( P  e.  ( RR  ^m  I )  <-> 
P : I --> RR ) )
115111, 114mpbird 235 . . . 4  |-  ( ph  ->  P  e.  ( RR 
^m  I ) )
116115, 16syl6eleqr 2511 . . 3  |-  ( ph  ->  P  e.  X )
117 1nn 10564 . . . . . . 7  |-  1  e.  NN
11825ad2antrr 730 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  I  e.  Fin )
11915adantlr 719 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  ( F `  k
)  e.  X )
120116ad2antrr 730 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  P  e.  X )
12116rrnmval 32061 . . . . . . . . . . . 12  |-  ( ( I  e.  Fin  /\  ( F `  k )  e.  X  /\  P  e.  X )  ->  (
( F `  k
) ( Rn `  I ) P )  =  ( sqr `  sum_ y  e.  I  (
( ( ( F `
 k ) `  y )  -  ( P `  y )
) ^ 2 ) ) )
122118, 119, 120, 121syl3anc 1264 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  ( ( F `  k ) ( Rn
`  I ) P )  =  ( sqr `  sum_ y  e.  I 
( ( ( ( F `  k ) `
 y )  -  ( P `  y ) ) ^ 2 ) ) )
123 simplrr 769 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  I  =  (/) )
124123sumeq1d 13703 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  -> 
sum_ y  e.  I 
( ( ( ( F `  k ) `
 y )  -  ( P `  y ) ) ^ 2 )  =  sum_ y  e.  (/)  ( ( ( ( F `  k ) `
 y )  -  ( P `  y ) ) ^ 2 ) )
125 sum0 13723 . . . . . . . . . . . . 13  |-  sum_ y  e.  (/)  ( ( ( ( F `  k
) `  y )  -  ( P `  y ) ) ^
2 )  =  0
126124, 125syl6eq 2472 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  -> 
sum_ y  e.  I 
( ( ( ( F `  k ) `
 y )  -  ( P `  y ) ) ^ 2 )  =  0 )
127126fveq2d 5822 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  ( sqr `  sum_ y  e.  I  (
( ( ( F `
 k ) `  y )  -  ( P `  y )
) ^ 2 ) )  =  ( sqr `  0 ) )
128122, 127eqtrd 2456 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  ( ( F `  k ) ( Rn
`  I ) P )  =  ( sqr `  0 ) )
129 sqrt0 13242 . . . . . . . . . 10  |-  ( sqr `  0 )  =  0
130128, 129syl6eq 2472 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  ( ( F `  k ) ( Rn
`  I ) P )  =  0 )
131 simplrl 768 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  x  e.  RR+ )
132131rpgt0d 11288 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  0  <  x )
133130, 132eqbrtrd 4380 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  ( ( F `  k ) ( Rn
`  I ) P )  <  x )
134133ralrimiva 2773 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =  (/) ) )  ->  A. k  e.  NN  ( ( F `
 k ) ( Rn `  I ) P )  <  x
)
135 fveq2 5818 . . . . . . . . . 10  |-  ( j  =  1  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  1 )
)
136135, 6syl6eqr 2474 . . . . . . . . 9  |-  ( j  =  1  ->  ( ZZ>=
`  j )  =  NN )
137136raleqdv 2964 . . . . . . . 8  |-  ( j  =  1  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
) ( Rn `  I ) P )  <  x  <->  A. k  e.  NN  ( ( F `
 k ) ( Rn `  I ) P )  <  x
) )
138137rspcev 3118 . . . . . . 7  |-  ( ( 1  e.  NN  /\  A. k  e.  NN  (
( F `  k
) ( Rn `  I ) P )  <  x )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k ) ( Rn `  I
) P )  < 
x )
139117, 134, 138sylancr 667 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =  (/) ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) ( Rn
`  I ) P )  <  x )
140139expr 618 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( I  =  (/)  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) ( Rn
`  I ) P )  <  x ) )
141 1zzd 10912 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  ->  1  e.  ZZ )
142 simprl 762 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  x  e.  RR+ )
143 simprr 764 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  I  =/=  (/) )
14425adantr 466 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  I  e.  Fin )
145 hashnncl 12490 . . . . . . . . . . . . . . . . 17  |-  ( I  e.  Fin  ->  (
( # `  I )  e.  NN  <->  I  =/=  (/) ) )
146144, 145syl 17 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  (
( # `  I )  e.  NN  <->  I  =/=  (/) ) )
147143, 146mpbird 235 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  ( # `
 I )  e.  NN )
148147nnrpd 11283 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  ( # `
 I )  e.  RR+ )
149148rpsqrtcld 13410 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  ( sqr `  ( # `  I
) )  e.  RR+ )
150142, 149rpdivcld 11302 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  (
x  /  ( sqr `  ( # `  I
) ) )  e.  RR+ )
151150adantr 466 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  ->  ( x  /  ( sqr `  ( # `  I
) ) )  e.  RR+ )
15212adantl 467 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  /\  k  e.  NN )  ->  ( ( t  e.  NN  |->  ( ( F `  t ) `
 n ) ) `
 k )  =  ( ( F `  k ) `  n
) )
153107adantlr 719 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  ->  ( t  e.  NN  |->  ( ( F `  t ) `  n
) )  ~~>  ( P `
 n ) )
1546, 141, 151, 152, 153climi2 13511 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( ( F `
 k ) `  n )  -  ( P `  n )
) )  <  (
x  /  ( sqr `  ( # `  I
) ) ) )
155 1z 10911 . . . . . . . . . . . 12  |-  1  e.  ZZ
1566rexuz3 13348 . . . . . . . . . . . 12  |-  ( 1  e.  ZZ  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( ( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) ) ) )
157155, 156ax-mp 5 . . . . . . . . . . 11  |-  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( ( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) ) )
15821adantllr 723 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  /\  k  e.  NN )  ->  ( ( F `
 k ) `  n )  e.  RR )
159108adantlr 719 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  ->  ( P `  n
)  e.  RR )
160159adantr 466 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  /\  k  e.  NN )  ->  ( P `  n )  e.  RR )
16144remetdval 21742 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( F `  k ) `  n
)  e.  RR  /\  ( P `  n )  e.  RR )  -> 
( ( ( F `
 k ) `  n ) M ( P `  n ) )  =  ( abs `  ( ( ( F `
 k ) `  n )  -  ( P `  n )
) ) )
162158, 160, 161syl2anc 665 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  /\  k  e.  NN )  ->  ( ( ( F `  k ) `
 n ) M ( P `  n
) )  =  ( abs `  ( ( ( F `  k
) `  n )  -  ( P `  n ) ) ) )
163162breq1d 4369 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  /\  k  e.  NN )  ->  ( ( ( ( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  <->  ( abs `  ( ( ( F `
 k ) `  n )  -  ( P `  n )
) )  <  (
x  /  ( sqr `  ( # `  I
) ) ) ) )
16439, 163sylan2 476 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( ( ( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  <->  ( abs `  ( ( ( F `
 k ) `  n )  -  ( P `  n )
) )  <  (
x  /  ( sqr `  ( # `  I
) ) ) ) )
165164anassrs 652 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I
)  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( ( F `  k ) `  n
) M ( P `
 n ) )  <  ( x  / 
( sqr `  ( # `
 I ) ) )  <->  ( abs `  (
( ( F `  k ) `  n
)  -  ( P `
 n ) ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) ) ) )
166165ralbidva 2795 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) )  <->  A. k  e.  (
ZZ>= `  j ) ( abs `  ( ( ( F `  k
) `  n )  -  ( P `  n ) ) )  <  ( x  / 
( sqr `  ( # `
 I ) ) ) ) )
167166rexbidva 2869 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) )  <->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( ( F `
 k ) `  n )  -  ( P `  n )
) )  <  (
x  /  ( sqr `  ( # `  I
) ) ) ) )
168157, 167syl5bbr 262 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) )  <->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( ( F `
 k ) `  n )  -  ( P `  n )
) )  <  (
x  /  ( sqr `  ( # `  I
) ) ) ) )
169154, 168mpbird 235 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  ->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ( ( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) ) )
170169ralrimiva 2773 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  A. n  e.  I  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) ) )
1716rexuz3 13348 . . . . . . . . . 10  |-  ( 1  e.  ZZ  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) A. n  e.  I  ( (
( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  I 
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) ) ) )
172155, 171ax-mp 5 . . . . . . . . 9  |-  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) A. n  e.  I  ( (
( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  I 
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) ) )
173 rexfiuz 13347 . . . . . . . . . 10  |-  ( I  e.  Fin  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  I  ( (
( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  <->  A. n  e.  I  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) ) ) )
174144, 173syl 17 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  I  ( (
( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  <->  A. n  e.  I  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) ) ) )
175172, 174syl5bb 260 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) A. n  e.  I  ( (
( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  <->  A. n  e.  I  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) ) ) )
176170, 175mpbird 235 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) A. n  e.  I 
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) ) )
17725ad2antrr 730 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  I  e.  Fin )
178 simplrr 769 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  I  =/=  (/) )
179 eldifsn 4061 . . . . . . . . . . . . . 14  |-  ( I  e.  ( Fin  \  { (/)
} )  <->  ( I  e.  Fin  /\  I  =/=  (/) ) )
180177, 178, 179sylanbrc 668 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  I  e.  ( Fin  \  { (/) } ) )
18114adantr 466 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  F : NN --> X )
182181ffvelrnda 5974 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  ( F `  k
)  e.  X )
183116ad2antrr 730 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  P  e.  X )
184150adantr 466 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  ( x  /  ( sqr `  ( # `  I
) ) )  e.  RR+ )
18516, 44rrndstprj2 32064 . . . . . . . . . . . . . 14  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  ( F `
 k )  e.  X  /\  P  e.  X )  /\  (
( x  /  ( sqr `  ( # `  I
) ) )  e.  RR+  /\  A. n  e.  I  ( ( ( F `  k ) `
 n ) M ( P `  n
) )  <  (
x  /  ( sqr `  ( # `  I
) ) ) ) )  ->  ( ( F `  k )
( Rn `  I
) P )  < 
( ( x  / 
( sqr `  ( # `
 I ) ) )  x.  ( sqr `  ( # `  I
) ) ) )
186185expr 618 . . . . . . . . . . . . 13  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  ( F `
 k )  e.  X  /\  P  e.  X )  /\  (
x  /  ( sqr `  ( # `  I
) ) )  e.  RR+ )  ->  ( A. n  e.  I  (
( ( F `  k ) `  n
) M ( P `
 n ) )  <  ( x  / 
( sqr `  ( # `
 I ) ) )  ->  ( ( F `  k )
( Rn `  I
) P )  < 
( ( x  / 
( sqr `  ( # `
 I ) ) )  x.  ( sqr `  ( # `  I
) ) ) ) )
187180, 182, 183, 184, 186syl31anc 1267 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  ( A. n  e.  I  ( ( ( F `  k ) `
 n ) M ( P `  n
) )  <  (
x  /  ( sqr `  ( # `  I
) ) )  -> 
( ( F `  k ) ( Rn
`  I ) P )  <  ( ( x  /  ( sqr `  ( # `  I
) ) )  x.  ( sqr `  ( # `
 I ) ) ) ) )
188 simplrl 768 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  x  e.  RR+ )
189188rpcnd 11287 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  x  e.  CC )
190149adantr 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  ( sqr `  ( # `
 I ) )  e.  RR+ )
191190rpcnd 11287 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  ( sqr `  ( # `
 I ) )  e.  CC )
192190rpne0d 11290 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  ( sqr `  ( # `
 I ) )  =/=  0 )
193189, 191, 192divcan1d 10328 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  ( ( x  / 
( sqr `  ( # `
 I ) ) )  x.  ( sqr `  ( # `  I
) ) )  =  x )
194193breq2d 4371 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  ( ( ( F `
 k ) ( Rn `  I ) P )  <  (
( x  /  ( sqr `  ( # `  I
) ) )  x.  ( sqr `  ( # `
 I ) ) )  <->  ( ( F `
 k ) ( Rn `  I ) P )  <  x
) )
195187, 194sylibd 217 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  ( A. n  e.  I  ( ( ( F `  k ) `
 n ) M ( P `  n
) )  <  (
x  /  ( sqr `  ( # `  I
) ) )  -> 
( ( F `  k ) ( Rn
`  I ) P )  <  x ) )
19639, 195sylan2 476 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( A. n  e.  I  ( (
( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  -> 
( ( F `  k ) ( Rn
`  I ) P )  <  x ) )
197196anassrs 652 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  /\  j  e.  NN )  /\  k  e.  ( ZZ>=
`  j ) )  ->  ( A. n  e.  I  ( (
( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  -> 
( ( F `  k ) ( Rn
`  I ) P )  <  x ) )
198197ralimdva 2767 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  j ) A. n  e.  I 
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) )  ->  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) ( Rn
`  I ) P )  <  x ) )
199198reximdva 2833 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) A. n  e.  I  ( (
( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k ) ( Rn `  I
) P )  < 
x ) )
200176, 199mpd 15 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) ( Rn
`  I ) P )  <  x )
201200expr 618 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( I  =/=  (/)  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) ( Rn
`  I ) P )  <  x ) )
202140, 201pm2.61dne 2681 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) ( Rn
`  I ) P )  <  x )
203202ralrimiva 2773 . . 3  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k ) ( Rn `  I
) P )  < 
x )
204 rrncms.3 . . . 4  |-  J  =  ( MetOpen `  ( Rn `  I ) )
205204, 29, 6, 30, 31, 14lmmbrf 22167 . . 3  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( P  e.  X  /\  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) ( Rn
`  I ) P )  <  x ) ) )
206116, 203, 205mpbir2and 930 . 2  |-  ( ph  ->  F ( ~~> t `  J ) P )
207 releldm 5022 . 2  |-  ( ( Rel  ( ~~> t `  J )  /\  F
( ~~> t `  J
) P )  ->  F  e.  dom  ( ~~> t `  J ) )
2081, 206, 207sylancr 667 1  |-  ( ph  ->  F  e.  dom  ( ~~> t `  J )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872    =/= wne 2593   A.wral 2708   E.wrex 2709   _Vcvv 3016    \ cdif 3369   (/)c0 3697   {csn 3934   class class class wbr 4359    |-> cmpt 4418    X. cxp 4787   dom cdm 4789    |` cres 4791    o. ccom 4793   Rel wrel 4794    Fn wfn 5532   -->wf 5533   ` cfv 5537  (class class class)co 6242    ^m cmap 7420   Fincfn 7517   RRcr 9482   0cc0 9483   1c1 9484    x. cmul 9488    < clt 9619    <_ cle 9620    - cmin 9804    / cdiv 10213   NNcn 10553   2c2 10603   ZZcz 10881   ZZ>=cuz 11103   RR+crp 11246   ^cexp 12215   #chash 12458   sqrcsqrt 13233   abscabs 13234    ~~> cli 13484   sum_csu 13688   *Metcxmt 18891   Metcme 18892   MetOpencmopn 18896   ~~> tclm 20177   Caucca 22158   Rncrrn 32058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2058  ax-ext 2402  ax-rep 4472  ax-sep 4482  ax-nul 4491  ax-pow 4538  ax-pr 4596  ax-un 6534  ax-inf2 8092  ax-cnex 9539  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-mulcom 9547  ax-addass 9548  ax-mulass 9549  ax-distr 9550  ax-i2m1 9551  ax-1ne0 9552  ax-1rid 9553  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558  ax-pre-ltadd 9559  ax-pre-mulgt0 9560  ax-pre-sup 9561  ax-addf 9562  ax-mulf 9563
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2274  df-mo 2275  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2552  df-ne 2595  df-nel 2596  df-ral 2713  df-rex 2714  df-reu 2715  df-rmo 2716  df-rab 2717  df-v 3018  df-sbc 3236  df-csb 3332  df-dif 3375  df-un 3377  df-in 3379  df-ss 3386  df-pss 3388  df-nul 3698  df-if 3848  df-pw 3919  df-sn 3935  df-pr 3937  df-tp 3939  df-op 3941  df-uni 4156  df-int 4192  df-iun 4237  df-br 4360  df-opab 4419  df-mpt 4420  df-tr 4455  df-eprel 4700  df-id 4704  df-po 4710  df-so 4711  df-fr 4748  df-se 4749  df-we 4750  df-xp 4795  df-rel 4796  df-cnv 4797  df-co 4798  df-dm 4799  df-rn 4800  df-res 4801  df-ima 4802  df-pred 5335  df-ord 5381  df-on 5382  df-lim 5383  df-suc 5384  df-iota 5501  df-fun 5539  df-fn 5540  df-f 5541  df-f1 5542  df-fo 5543  df-f1o 5544  df-fv 5545  df-isom 5546  df-riota 6204  df-ov 6245  df-oprab 6246  df-mpt2 6247  df-om 6644  df-1st 6744  df-2nd 6745  df-wrecs 6976  df-recs 7038  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-map 7422  df-pm 7423  df-en 7518  df-dom 7519  df-sdom 7520  df-fin 7521  df-sup 7902  df-inf 7903  df-oi 7971  df-card 8318  df-pnf 9621  df-mnf 9622  df-xr 9623  df-ltxr 9624  df-le 9625  df-sub 9806  df-neg 9807  df-div 10214  df-nn 10554  df-2 10612  df-3 10613  df-4 10614  df-n0 10814  df-z 10882  df-uz 11104  df-q 11209  df-rp 11247  df-xneg 11353  df-xadd 11354  df-xmul 11355  df-ico 11585  df-fz 11729  df-fzo 11860  df-fl 11971  df-seq 12157  df-exp 12216  df-hash 12459  df-cj 13099  df-re 13100  df-im 13101  df-sqrt 13235  df-abs 13236  df-limsup 13462  df-clim 13488  df-rlim 13489  df-sum 13689  df-topgen 15278  df-psmet 18898  df-xmet 18899  df-met 18900  df-bl 18901  df-mopn 18902  df-top 19856  df-bases 19857  df-topon 19858  df-lm 20180  df-cau 22161  df-rrn 32059
This theorem is referenced by:  rrncms  32066
  Copyright terms: Public domain W3C validator