Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrncmslem Structured version   Unicode version

Theorem rrncmslem 30303
Description: Lemma for rrncms 30304. (Contributed by Jeff Madsen, 6-Jun-2014.) (Revised by Mario Carneiro, 13-Sep-2015.)
Hypotheses
Ref Expression
rrnval.1  |-  X  =  ( RR  ^m  I
)
rrndstprj1.1  |-  M  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
rrncms.3  |-  J  =  ( MetOpen `  ( Rn `  I ) )
rrncms.4  |-  ( ph  ->  I  e.  Fin )
rrncms.5  |-  ( ph  ->  F  e.  ( Cau `  ( Rn `  I
) ) )
rrncms.6  |-  ( ph  ->  F : NN --> X )
rrncms.7  |-  P  =  ( m  e.  I  |->  (  ~~>  `  ( t  e.  NN  |->  ( ( F `
 t ) `  m ) ) ) )
Assertion
Ref Expression
rrncmslem  |-  ( ph  ->  F  e.  dom  ( ~~> t `  J )
)
Distinct variable groups:    m, I    t, m, F
Allowed substitution hints:    ph( t, m)    P( t, m)    I( t)    J( t, m)    M( t, m)    X( t, m)

Proof of Theorem rrncmslem
Dummy variables  k  n  x  y  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmrel 19604 . 2  |-  Rel  ( ~~> t `  J )
2 fvex 5866 . . . . . . . 8  |-  (  ~~>  `  (
t  e.  NN  |->  ( ( F `  t
) `  m )
) )  e.  _V
3 rrncms.7 . . . . . . . 8  |-  P  =  ( m  e.  I  |->  (  ~~>  `  ( t  e.  NN  |->  ( ( F `
 t ) `  m ) ) ) )
42, 3fnmpti 5699 . . . . . . 7  |-  P  Fn  I
54a1i 11 . . . . . 6  |-  ( ph  ->  P  Fn  I )
6 nnuz 11125 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
7 1zzd 10901 . . . . . . . 8  |-  ( (
ph  /\  n  e.  I )  ->  1  e.  ZZ )
8 fveq2 5856 . . . . . . . . . . . . . . . 16  |-  ( t  =  k  ->  ( F `  t )  =  ( F `  k ) )
98fveq1d 5858 . . . . . . . . . . . . . . 15  |-  ( t  =  k  ->  (
( F `  t
) `  n )  =  ( ( F `
 k ) `  n ) )
10 eqid 2443 . . . . . . . . . . . . . . 15  |-  ( t  e.  NN  |->  ( ( F `  t ) `
 n ) )  =  ( t  e.  NN  |->  ( ( F `
 t ) `  n ) )
11 fvex 5866 . . . . . . . . . . . . . . 15  |-  ( ( F `  k ) `
 n )  e. 
_V
129, 10, 11fvmpt 5941 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  k
)  =  ( ( F `  k ) `
 n ) )
1312adantl 466 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  I )  /\  k  e.  NN )  ->  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  k
)  =  ( ( F `  k ) `
 n ) )
14 rrncms.6 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  F : NN --> X )
1514ffvelrnda 6016 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  X )
16 rrnval.1 . . . . . . . . . . . . . . . . 17  |-  X  =  ( RR  ^m  I
)
1715, 16syl6eleq 2541 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  ( RR  ^m  I
) )
18 elmapi 7442 . . . . . . . . . . . . . . . 16  |-  ( ( F `  k )  e.  ( RR  ^m  I )  ->  ( F `  k ) : I --> RR )
1917, 18syl 16 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k ) : I --> RR )
2019ffvelrnda 6016 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  I )  ->  (
( F `  k
) `  n )  e.  RR )
2120an32s 804 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  I )  /\  k  e.  NN )  ->  (
( F `  k
) `  n )  e.  RR )
2213, 21eqeltrd 2531 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  I )  /\  k  e.  NN )  ->  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  k
)  e.  RR )
2322recnd 9625 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  I )  /\  k  e.  NN )  ->  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  k
)  e.  CC )
24 rrncms.5 . . . . . . . . . . . . . 14  |-  ( ph  ->  F  e.  ( Cau `  ( Rn `  I
) ) )
25 rrncms.4 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  I  e.  Fin )
2616rrnmet 30300 . . . . . . . . . . . . . . . . 17  |-  ( I  e.  Fin  ->  ( Rn `  I )  e.  ( Met `  X
) )
2725, 26syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( Rn `  I
)  e.  ( Met `  X ) )
28 metxmet 20710 . . . . . . . . . . . . . . . 16  |-  ( ( Rn `  I )  e.  ( Met `  X
)  ->  ( Rn `  I )  e.  ( *Met `  X
) )
2927, 28syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( Rn `  I
)  e.  ( *Met `  X ) )
30 1zzd 10901 . . . . . . . . . . . . . . 15  |-  ( ph  ->  1  e.  ZZ )
31 eqidd 2444 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  =  ( F `  k
) )
32 eqidd 2444 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  j  e.  NN )  ->  ( F `
 j )  =  ( F `  j
) )
336, 29, 30, 31, 32, 14iscauf 21592 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F  e.  ( Cau `  ( Rn
`  I ) )  <->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  j ) ( Rn
`  I ) ( F `  k ) )  <  x ) )
3424, 33mpbid 210 . . . . . . . . . . . . 13  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  j ) ( Rn `  I
) ( F `  k ) )  < 
x )
3534adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  I )  ->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  j ) ( Rn
`  I ) ( F `  k ) )  <  x )
3625ad3antrrr 729 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  I  e.  Fin )
37 simpllr 760 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  n  e.  I
)
3814ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  F : NN --> X )
39 eluznn 11161 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  NN )
4039adantll 713 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  k  e.  NN )
4138, 40ffvelrnd 6017 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( F `  k )  e.  X
)
42 simplr 755 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  j  e.  NN )
4338, 42ffvelrnd 6017 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( F `  j )  e.  X
)
44 rrndstprj1.1 . . . . . . . . . . . . . . . . . . . . 21  |-  M  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
4516, 44rrndstprj1 30301 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( I  e.  Fin  /\  n  e.  I )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 j )  e.  X ) )  -> 
( ( ( F `
 k ) `  n ) M ( ( F `  j
) `  n )
)  <_  ( ( F `  k )
( Rn `  I
) ( F `  j ) ) )
4636, 37, 41, 43, 45syl22anc 1230 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( F `  k ) `
 n ) M ( ( F `  j ) `  n
) )  <_  (
( F `  k
) ( Rn `  I ) ( F `
 j ) ) )
4727ad3antrrr 729 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( Rn `  I )  e.  ( Met `  X ) )
48 metsym 20726 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( Rn `  I
)  e.  ( Met `  X )  /\  ( F `  k )  e.  X  /\  ( F `  j )  e.  X )  ->  (
( F `  k
) ( Rn `  I ) ( F `
 j ) )  =  ( ( F `
 j ) ( Rn `  I ) ( F `  k
) ) )
4947, 41, 43, 48syl3anc 1229 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( F `
 k ) ( Rn `  I ) ( F `  j
) )  =  ( ( F `  j
) ( Rn `  I ) ( F `
 k ) ) )
5046, 49breqtrd 4461 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( F `  k ) `
 n ) M ( ( F `  j ) `  n
) )  <_  (
( F `  j
) ( Rn `  I ) ( F `
 k ) ) )
5150adantllr 718 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  n  e.  I )  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( F `  k ) `
 n ) M ( ( F `  j ) `  n
) )  <_  (
( F `  j
) ( Rn `  I ) ( F `
 k ) ) )
5244remet 21168 . . . . . . . . . . . . . . . . . . . . 21  |-  M  e.  ( Met `  RR )
5352a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  M  e.  ( Met `  RR ) )
54 simpll 753 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ph  /\  n  e.  I )
)
5554, 40, 21syl2anc 661 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( F `
 k ) `  n )  e.  RR )
5614ffvelrnda 6016 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  j  e.  NN )  ->  ( F `
 j )  e.  X )
5756, 16syl6eleq 2541 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  j  e.  NN )  ->  ( F `
 j )  e.  ( RR  ^m  I
) )
58 elmapi 7442 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( F `  j )  e.  ( RR  ^m  I )  ->  ( F `  j ) : I --> RR )
5957, 58syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  j  e.  NN )  ->  ( F `
 j ) : I --> RR )
6059ffvelrnda 6016 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  j  e.  NN )  /\  n  e.  I )  ->  (
( F `  j
) `  n )  e.  RR )
6160an32s 804 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  ->  (
( F `  j
) `  n )  e.  RR )
6261adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( F `
 j ) `  n )  e.  RR )
63 metcl 20708 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( M  e.  ( Met `  RR )  /\  (
( F `  k
) `  n )  e.  RR  /\  ( ( F `  j ) `
 n )  e.  RR )  ->  (
( ( F `  k ) `  n
) M ( ( F `  j ) `
 n ) )  e.  RR )
6453, 55, 62, 63syl3anc 1229 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( F `  k ) `
 n ) M ( ( F `  j ) `  n
) )  e.  RR )
6564adantllr 718 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  n  e.  I )  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( F `  k ) `
 n ) M ( ( F `  j ) `  n
) )  e.  RR )
66 metcl 20708 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( Rn `  I
)  e.  ( Met `  X )  /\  ( F `  j )  e.  X  /\  ( F `  k )  e.  X )  ->  (
( F `  j
) ( Rn `  I ) ( F `
 k ) )  e.  RR )
6747, 43, 41, 66syl3anc 1229 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( F `
 j ) ( Rn `  I ) ( F `  k
) )  e.  RR )
6867adantllr 718 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  n  e.  I )  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( F `
 j ) ( Rn `  I ) ( F `  k
) )  e.  RR )
69 rpre 11235 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  RR+  ->  x  e.  RR )
7069adantl 466 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  n  e.  I )  /\  x  e.  RR+ )  ->  x  e.  RR )
7170ad2antrr 725 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  n  e.  I )  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  x  e.  RR )
72 lelttr 9678 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( F `
 k ) `  n ) M ( ( F `  j
) `  n )
)  e.  RR  /\  ( ( F `  j ) ( Rn
`  I ) ( F `  k ) )  e.  RR  /\  x  e.  RR )  ->  ( ( ( ( ( F `  k
) `  n ) M ( ( F `
 j ) `  n ) )  <_ 
( ( F `  j ) ( Rn
`  I ) ( F `  k ) )  /\  ( ( F `  j ) ( Rn `  I
) ( F `  k ) )  < 
x )  ->  (
( ( F `  k ) `  n
) M ( ( F `  j ) `
 n ) )  <  x ) )
7365, 68, 71, 72syl3anc 1229 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  n  e.  I )  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( ( ( F `  k ) `  n
) M ( ( F `  j ) `
 n ) )  <_  ( ( F `
 j ) ( Rn `  I ) ( F `  k
) )  /\  (
( F `  j
) ( Rn `  I ) ( F `
 k ) )  <  x )  -> 
( ( ( F `
 k ) `  n ) M ( ( F `  j
) `  n )
)  <  x )
)
7451, 73mpand 675 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  n  e.  I )  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( F `  j ) ( Rn `  I
) ( F `  k ) )  < 
x  ->  ( (
( F `  k
) `  n ) M ( ( F `
 j ) `  n ) )  < 
x ) )
7574ralimdva 2851 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  n  e.  I )  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  j )
( ( F `  j ) ( Rn
`  I ) ( F `  k ) )  <  x  ->  A. k  e.  ( ZZ>=
`  j ) ( ( ( F `  k ) `  n
) M ( ( F `  j ) `
 n ) )  <  x ) )
7675reximdva 2918 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  I )  /\  x  e.  RR+ )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  j ) ( Rn `  I
) ( F `  k ) )  < 
x  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( ( F `  j
) `  n )
)  <  x )
)
7776ralimdva 2851 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  I )  ->  ( A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  j ) ( Rn
`  I ) ( F `  k ) )  <  x  ->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( ( F `  j
) `  n )
)  <  x )
)
7844remetdval 21167 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( F `  k ) `  n
)  e.  RR  /\  ( ( F `  j ) `  n
)  e.  RR )  ->  ( ( ( F `  k ) `
 n ) M ( ( F `  j ) `  n
) )  =  ( abs `  ( ( ( F `  k
) `  n )  -  ( ( F `
 j ) `  n ) ) ) )
7955, 62, 78syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( F `  k ) `
 n ) M ( ( F `  j ) `  n
) )  =  ( abs `  ( ( ( F `  k
) `  n )  -  ( ( F `
 j ) `  n ) ) ) )
8040, 12syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( t  e.  NN  |->  ( ( F `  t ) `
 n ) ) `
 k )  =  ( ( F `  k ) `  n
) )
81 fveq2 5856 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( t  =  j  ->  ( F `  t )  =  ( F `  j ) )
8281fveq1d 5858 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( t  =  j  ->  (
( F `  t
) `  n )  =  ( ( F `
 j ) `  n ) )
83 fvex 5866 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( F `  j ) `
 n )  e. 
_V
8482, 10, 83fvmpt 5941 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  e.  NN  ->  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  j
)  =  ( ( F `  j ) `
 n ) )
8584ad2antlr 726 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( t  e.  NN  |->  ( ( F `  t ) `
 n ) ) `
 j )  =  ( ( F `  j ) `  n
) )
8680, 85oveq12d 6299 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( t  e.  NN  |->  ( ( F `  t
) `  n )
) `  k )  -  ( ( t  e.  NN  |->  ( ( F `  t ) `
 n ) ) `
 j ) )  =  ( ( ( F `  k ) `
 n )  -  ( ( F `  j ) `  n
) ) )
8786fveq2d 5860 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( abs `  (
( ( t  e.  NN  |->  ( ( F `
 t ) `  n ) ) `  k )  -  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  j
) ) )  =  ( abs `  (
( ( F `  k ) `  n
)  -  ( ( F `  j ) `
 n ) ) ) )
8879, 87eqtr4d 2487 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( F `  k ) `
 n ) M ( ( F `  j ) `  n
) )  =  ( abs `  ( ( ( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  k
)  -  ( ( t  e.  NN  |->  ( ( F `  t
) `  n )
) `  j )
) ) )
8988breq1d 4447 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( ( F `  k
) `  n ) M ( ( F `
 j ) `  n ) )  < 
x  <->  ( abs `  (
( ( t  e.  NN  |->  ( ( F `
 t ) `  n ) ) `  k )  -  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  j
) ) )  < 
x ) )
9089ralbidva 2879 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( ( F `  k ) `  n
) M ( ( F `  j ) `
 n ) )  <  x  <->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( ( t  e.  NN  |->  ( ( F `
 t ) `  n ) ) `  k )  -  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  j
) ) )  < 
x ) )
9190rexbidva 2951 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  I )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( ( F `  k
) `  n ) M ( ( F `
 j ) `  n ) )  < 
x  <->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( ( t  e.  NN  |->  ( ( F `  t ) `
 n ) ) `
 k )  -  ( ( t  e.  NN  |->  ( ( F `
 t ) `  n ) ) `  j ) ) )  <  x ) )
9291ralbidv 2882 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  I )  ->  ( A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( ( F `  j
) `  n )
)  <  x  <->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( abs `  (
( ( t  e.  NN  |->  ( ( F `
 t ) `  n ) ) `  k )  -  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  j
) ) )  < 
x ) )
9377, 92sylibd 214 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  I )  ->  ( A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  j ) ( Rn
`  I ) ( F `  k ) )  <  x  ->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( abs `  (
( ( t  e.  NN  |->  ( ( F `
 t ) `  n ) ) `  k )  -  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  j
) ) )  < 
x ) )
9435, 93mpd 15 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( abs `  (
( ( t  e.  NN  |->  ( ( F `
 t ) `  n ) ) `  k )  -  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  j
) ) )  < 
x )
95 nnex 10548 . . . . . . . . . . . . 13  |-  NN  e.  _V
9695mptex 6128 . . . . . . . . . . . 12  |-  ( t  e.  NN  |->  ( ( F `  t ) `
 n ) )  e.  _V
9796a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  (
t  e.  NN  |->  ( ( F `  t
) `  n )
)  e.  _V )
986, 23, 94, 97caucvg 13480 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  I )  ->  (
t  e.  NN  |->  ( ( F `  t
) `  n )
)  e.  dom  ~~>  )
99 climdm 13356 . . . . . . . . . 10  |-  ( ( t  e.  NN  |->  ( ( F `  t
) `  n )
)  e.  dom  ~~>  <->  ( t  e.  NN  |->  ( ( F `
 t ) `  n ) )  ~~>  (  ~~>  `  (
t  e.  NN  |->  ( ( F `  t
) `  n )
) ) )
10098, 99sylib 196 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  I )  ->  (
t  e.  NN  |->  ( ( F `  t
) `  n )
)  ~~>  (  ~~>  `  (
t  e.  NN  |->  ( ( F `  t
) `  n )
) ) )
101 fveq2 5856 . . . . . . . . . . . . 13  |-  ( m  =  n  ->  (
( F `  t
) `  m )  =  ( ( F `
 t ) `  n ) )
102101mpteq2dv 4524 . . . . . . . . . . . 12  |-  ( m  =  n  ->  (
t  e.  NN  |->  ( ( F `  t
) `  m )
)  =  ( t  e.  NN  |->  ( ( F `  t ) `
 n ) ) )
103102fveq2d 5860 . . . . . . . . . . 11  |-  ( m  =  n  ->  (  ~~>  `  ( t  e.  NN  |->  ( ( F `  t ) `  m
) ) )  =  (  ~~>  `  ( t  e.  NN  |->  ( ( F `
 t ) `  n ) ) ) )
104 fvex 5866 . . . . . . . . . . 11  |-  (  ~~>  `  (
t  e.  NN  |->  ( ( F `  t
) `  n )
) )  e.  _V
105103, 3, 104fvmpt 5941 . . . . . . . . . 10  |-  ( n  e.  I  ->  ( P `  n )  =  (  ~~>  `  ( t  e.  NN  |->  ( ( F `  t ) `
 n ) ) ) )
106105adantl 466 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  I )  ->  ( P `  n )  =  (  ~~>  `  ( t  e.  NN  |->  ( ( F `  t ) `
 n ) ) ) )
107100, 106breqtrrd 4463 . . . . . . . 8  |-  ( (
ph  /\  n  e.  I )  ->  (
t  e.  NN  |->  ( ( F `  t
) `  n )
)  ~~>  ( P `  n ) )
1086, 7, 107, 22climrecl 13385 . . . . . . 7  |-  ( (
ph  /\  n  e.  I )  ->  ( P `  n )  e.  RR )
109108ralrimiva 2857 . . . . . 6  |-  ( ph  ->  A. n  e.  I 
( P `  n
)  e.  RR )
110 ffnfv 6042 . . . . . 6  |-  ( P : I --> RR  <->  ( P  Fn  I  /\  A. n  e.  I  ( P `  n )  e.  RR ) )
1115, 109, 110sylanbrc 664 . . . . 5  |-  ( ph  ->  P : I --> RR )
112 reex 9586 . . . . . 6  |-  RR  e.  _V
113 elmapg 7435 . . . . . 6  |-  ( ( RR  e.  _V  /\  I  e.  Fin )  ->  ( P  e.  ( RR  ^m  I )  <-> 
P : I --> RR ) )
114112, 25, 113sylancr 663 . . . . 5  |-  ( ph  ->  ( P  e.  ( RR  ^m  I )  <-> 
P : I --> RR ) )
115111, 114mpbird 232 . . . 4  |-  ( ph  ->  P  e.  ( RR 
^m  I ) )
116115, 16syl6eleqr 2542 . . 3  |-  ( ph  ->  P  e.  X )
117 1nn 10553 . . . . . . 7  |-  1  e.  NN
11825ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  I  e.  Fin )
11915adantlr 714 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  ( F `  k
)  e.  X )
120116ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  P  e.  X )
12116rrnmval 30299 . . . . . . . . . . . 12  |-  ( ( I  e.  Fin  /\  ( F `  k )  e.  X  /\  P  e.  X )  ->  (
( F `  k
) ( Rn `  I ) P )  =  ( sqr `  sum_ y  e.  I  (
( ( ( F `
 k ) `  y )  -  ( P `  y )
) ^ 2 ) ) )
122118, 119, 120, 121syl3anc 1229 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  ( ( F `  k ) ( Rn
`  I ) P )  =  ( sqr `  sum_ y  e.  I 
( ( ( ( F `  k ) `
 y )  -  ( P `  y ) ) ^ 2 ) ) )
123 simplrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  I  =  (/) )
124123sumeq1d 13502 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  -> 
sum_ y  e.  I 
( ( ( ( F `  k ) `
 y )  -  ( P `  y ) ) ^ 2 )  =  sum_ y  e.  (/)  ( ( ( ( F `  k ) `
 y )  -  ( P `  y ) ) ^ 2 ) )
125 sum0 13522 . . . . . . . . . . . . 13  |-  sum_ y  e.  (/)  ( ( ( ( F `  k
) `  y )  -  ( P `  y ) ) ^
2 )  =  0
126124, 125syl6eq 2500 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  -> 
sum_ y  e.  I 
( ( ( ( F `  k ) `
 y )  -  ( P `  y ) ) ^ 2 )  =  0 )
127126fveq2d 5860 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  ( sqr `  sum_ y  e.  I  (
( ( ( F `
 k ) `  y )  -  ( P `  y )
) ^ 2 ) )  =  ( sqr `  0 ) )
128122, 127eqtrd 2484 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  ( ( F `  k ) ( Rn
`  I ) P )  =  ( sqr `  0 ) )
129 sqrt0 13054 . . . . . . . . . 10  |-  ( sqr `  0 )  =  0
130128, 129syl6eq 2500 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  ( ( F `  k ) ( Rn
`  I ) P )  =  0 )
131 simplrl 761 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  x  e.  RR+ )
132131rpgt0d 11268 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  0  <  x )
133130, 132eqbrtrd 4457 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  ( ( F `  k ) ( Rn
`  I ) P )  <  x )
134133ralrimiva 2857 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =  (/) ) )  ->  A. k  e.  NN  ( ( F `
 k ) ( Rn `  I ) P )  <  x
)
135 fveq2 5856 . . . . . . . . . 10  |-  ( j  =  1  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  1 )
)
136135, 6syl6eqr 2502 . . . . . . . . 9  |-  ( j  =  1  ->  ( ZZ>=
`  j )  =  NN )
137136raleqdv 3046 . . . . . . . 8  |-  ( j  =  1  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
) ( Rn `  I ) P )  <  x  <->  A. k  e.  NN  ( ( F `
 k ) ( Rn `  I ) P )  <  x
) )
138137rspcev 3196 . . . . . . 7  |-  ( ( 1  e.  NN  /\  A. k  e.  NN  (
( F `  k
) ( Rn `  I ) P )  <  x )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k ) ( Rn `  I
) P )  < 
x )
139117, 134, 138sylancr 663 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =  (/) ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) ( Rn
`  I ) P )  <  x )
140139expr 615 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( I  =  (/)  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) ( Rn
`  I ) P )  <  x ) )
141 1zzd 10901 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  ->  1  e.  ZZ )
142 simprl 756 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  x  e.  RR+ )
143 simprr 757 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  I  =/=  (/) )
14425adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  I  e.  Fin )
145 hashnncl 12415 . . . . . . . . . . . . . . . . 17  |-  ( I  e.  Fin  ->  (
( # `  I )  e.  NN  <->  I  =/=  (/) ) )
146144, 145syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  (
( # `  I )  e.  NN  <->  I  =/=  (/) ) )
147143, 146mpbird 232 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  ( # `
 I )  e.  NN )
148147nnrpd 11264 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  ( # `
 I )  e.  RR+ )
149148rpsqrtcld 13222 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  ( sqr `  ( # `  I
) )  e.  RR+ )
150142, 149rpdivcld 11282 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  (
x  /  ( sqr `  ( # `  I
) ) )  e.  RR+ )
151150adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  ->  ( x  /  ( sqr `  ( # `  I
) ) )  e.  RR+ )
15212adantl 466 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  /\  k  e.  NN )  ->  ( ( t  e.  NN  |->  ( ( F `  t ) `
 n ) ) `
 k )  =  ( ( F `  k ) `  n
) )
153107adantlr 714 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  ->  ( t  e.  NN  |->  ( ( F `  t ) `  n
) )  ~~>  ( P `
 n ) )
1546, 141, 151, 152, 153climi2 13313 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( ( F `
 k ) `  n )  -  ( P `  n )
) )  <  (
x  /  ( sqr `  ( # `  I
) ) ) )
155 1z 10900 . . . . . . . . . . . 12  |-  1  e.  ZZ
1566rexuz3 13160 . . . . . . . . . . . 12  |-  ( 1  e.  ZZ  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( ( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) ) ) )
157155, 156ax-mp 5 . . . . . . . . . . 11  |-  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( ( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) ) )
15821adantllr 718 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  /\  k  e.  NN )  ->  ( ( F `
 k ) `  n )  e.  RR )
159108adantlr 714 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  ->  ( P `  n
)  e.  RR )
160159adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  /\  k  e.  NN )  ->  ( P `  n )  e.  RR )
16144remetdval 21167 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( F `  k ) `  n
)  e.  RR  /\  ( P `  n )  e.  RR )  -> 
( ( ( F `
 k ) `  n ) M ( P `  n ) )  =  ( abs `  ( ( ( F `
 k ) `  n )  -  ( P `  n )
) ) )
162158, 160, 161syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  /\  k  e.  NN )  ->  ( ( ( F `  k ) `
 n ) M ( P `  n
) )  =  ( abs `  ( ( ( F `  k
) `  n )  -  ( P `  n ) ) ) )
163162breq1d 4447 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  /\  k  e.  NN )  ->  ( ( ( ( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  <->  ( abs `  ( ( ( F `
 k ) `  n )  -  ( P `  n )
) )  <  (
x  /  ( sqr `  ( # `  I
) ) ) ) )
16439, 163sylan2 474 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( ( ( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  <->  ( abs `  ( ( ( F `
 k ) `  n )  -  ( P `  n )
) )  <  (
x  /  ( sqr `  ( # `  I
) ) ) ) )
165164anassrs 648 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I
)  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( ( F `  k ) `  n
) M ( P `
 n ) )  <  ( x  / 
( sqr `  ( # `
 I ) ) )  <->  ( abs `  (
( ( F `  k ) `  n
)  -  ( P `
 n ) ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) ) ) )
166165ralbidva 2879 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) )  <->  A. k  e.  (
ZZ>= `  j ) ( abs `  ( ( ( F `  k
) `  n )  -  ( P `  n ) ) )  <  ( x  / 
( sqr `  ( # `
 I ) ) ) ) )
167166rexbidva 2951 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) )  <->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( ( F `
 k ) `  n )  -  ( P `  n )
) )  <  (
x  /  ( sqr `  ( # `  I
) ) ) ) )
168157, 167syl5bbr 259 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) )  <->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( ( F `
 k ) `  n )  -  ( P `  n )
) )  <  (
x  /  ( sqr `  ( # `  I
) ) ) ) )
169154, 168mpbird 232 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  ->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ( ( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) ) )
170169ralrimiva 2857 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  A. n  e.  I  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) ) )
1716rexuz3 13160 . . . . . . . . . 10  |-  ( 1  e.  ZZ  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) A. n  e.  I  ( (
( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  I 
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) ) ) )
172155, 171ax-mp 5 . . . . . . . . 9  |-  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) A. n  e.  I  ( (
( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  I 
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) ) )
173 rexfiuz 13159 . . . . . . . . . 10  |-  ( I  e.  Fin  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  I  ( (
( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  <->  A. n  e.  I  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) ) ) )
174144, 173syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  I  ( (
( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  <->  A. n  e.  I  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) ) ) )
175172, 174syl5bb 257 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) A. n  e.  I  ( (
( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  <->  A. n  e.  I  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) ) ) )
176170, 175mpbird 232 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) A. n  e.  I 
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) ) )
17725ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  I  e.  Fin )
178 simplrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  I  =/=  (/) )
179 eldifsn 4140 . . . . . . . . . . . . . 14  |-  ( I  e.  ( Fin  \  { (/)
} )  <->  ( I  e.  Fin  /\  I  =/=  (/) ) )
180177, 178, 179sylanbrc 664 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  I  e.  ( Fin  \  { (/) } ) )
18114adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  F : NN --> X )
182181ffvelrnda 6016 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  ( F `  k
)  e.  X )
183116ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  P  e.  X )
184150adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  ( x  /  ( sqr `  ( # `  I
) ) )  e.  RR+ )
18516, 44rrndstprj2 30302 . . . . . . . . . . . . . 14  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  ( F `
 k )  e.  X  /\  P  e.  X )  /\  (
( x  /  ( sqr `  ( # `  I
) ) )  e.  RR+  /\  A. n  e.  I  ( ( ( F `  k ) `
 n ) M ( P `  n
) )  <  (
x  /  ( sqr `  ( # `  I
) ) ) ) )  ->  ( ( F `  k )
( Rn `  I
) P )  < 
( ( x  / 
( sqr `  ( # `
 I ) ) )  x.  ( sqr `  ( # `  I
) ) ) )
186185expr 615 . . . . . . . . . . . . 13  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  ( F `
 k )  e.  X  /\  P  e.  X )  /\  (
x  /  ( sqr `  ( # `  I
) ) )  e.  RR+ )  ->  ( A. n  e.  I  (
( ( F `  k ) `  n
) M ( P `
 n ) )  <  ( x  / 
( sqr `  ( # `
 I ) ) )  ->  ( ( F `  k )
( Rn `  I
) P )  < 
( ( x  / 
( sqr `  ( # `
 I ) ) )  x.  ( sqr `  ( # `  I
) ) ) ) )
187180, 182, 183, 184, 186syl31anc 1232 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  ( A. n  e.  I  ( ( ( F `  k ) `
 n ) M ( P `  n
) )  <  (
x  /  ( sqr `  ( # `  I
) ) )  -> 
( ( F `  k ) ( Rn
`  I ) P )  <  ( ( x  /  ( sqr `  ( # `  I
) ) )  x.  ( sqr `  ( # `
 I ) ) ) ) )
188 simplrl 761 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  x  e.  RR+ )
189188rpcnd 11267 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  x  e.  CC )
190149adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  ( sqr `  ( # `
 I ) )  e.  RR+ )
191190rpcnd 11267 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  ( sqr `  ( # `
 I ) )  e.  CC )
192190rpne0d 11270 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  ( sqr `  ( # `
 I ) )  =/=  0 )
193189, 191, 192divcan1d 10327 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  ( ( x  / 
( sqr `  ( # `
 I ) ) )  x.  ( sqr `  ( # `  I
) ) )  =  x )
194193breq2d 4449 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  ( ( ( F `
 k ) ( Rn `  I ) P )  <  (
( x  /  ( sqr `  ( # `  I
) ) )  x.  ( sqr `  ( # `
 I ) ) )  <->  ( ( F `
 k ) ( Rn `  I ) P )  <  x
) )
195187, 194sylibd 214 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  ( A. n  e.  I  ( ( ( F `  k ) `
 n ) M ( P `  n
) )  <  (
x  /  ( sqr `  ( # `  I
) ) )  -> 
( ( F `  k ) ( Rn
`  I ) P )  <  x ) )
19639, 195sylan2 474 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( A. n  e.  I  ( (
( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  -> 
( ( F `  k ) ( Rn
`  I ) P )  <  x ) )
197196anassrs 648 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  /\  j  e.  NN )  /\  k  e.  ( ZZ>=
`  j ) )  ->  ( A. n  e.  I  ( (
( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  -> 
( ( F `  k ) ( Rn
`  I ) P )  <  x ) )
198197ralimdva 2851 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  j ) A. n  e.  I 
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) )  ->  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) ( Rn
`  I ) P )  <  x ) )
199198reximdva 2918 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) A. n  e.  I  ( (
( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k ) ( Rn `  I
) P )  < 
x ) )
200176, 199mpd 15 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) ( Rn
`  I ) P )  <  x )
201200expr 615 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( I  =/=  (/)  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) ( Rn
`  I ) P )  <  x ) )
202140, 201pm2.61dne 2760 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) ( Rn
`  I ) P )  <  x )
203202ralrimiva 2857 . . 3  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k ) ( Rn `  I
) P )  < 
x )
204 rrncms.3 . . . 4  |-  J  =  ( MetOpen `  ( Rn `  I ) )
205204, 29, 6, 30, 31, 14lmmbrf 21574 . . 3  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( P  e.  X  /\  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) ( Rn
`  I ) P )  <  x ) ) )
206116, 203, 205mpbir2and 922 . 2  |-  ( ph  ->  F ( ~~> t `  J ) P )
207 releldm 5225 . 2  |-  ( ( Rel  ( ~~> t `  J )  /\  F
( ~~> t `  J
) P )  ->  F  e.  dom  ( ~~> t `  J ) )
2081, 206, 207sylancr 663 1  |-  ( ph  ->  F  e.  dom  ( ~~> t `  J )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804    =/= wne 2638   A.wral 2793   E.wrex 2794   _Vcvv 3095    \ cdif 3458   (/)c0 3770   {csn 4014   class class class wbr 4437    |-> cmpt 4495    X. cxp 4987   dom cdm 4989    |` cres 4991    o. ccom 4993   Rel wrel 4994    Fn wfn 5573   -->wf 5574   ` cfv 5578  (class class class)co 6281    ^m cmap 7422   Fincfn 7518   RRcr 9494   0cc0 9495   1c1 9496    x. cmul 9500    < clt 9631    <_ cle 9632    - cmin 9810    / cdiv 10212   NNcn 10542   2c2 10591   ZZcz 10870   ZZ>=cuz 11090   RR+crp 11229   ^cexp 12145   #chash 12384   sqrcsqrt 13045   abscabs 13046    ~~> cli 13286   sum_csu 13487   *Metcxmt 18277   Metcme 18278   MetOpencmopn 18282   ~~> tclm 19600   Caucca 21565   Rncrrn 30296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-inf2 8061  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573  ax-addf 9574  ax-mulf 9575
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-fal 1389  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-se 4829  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-isom 5587  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-1o 7132  df-oadd 7136  df-er 7313  df-map 7424  df-pm 7425  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-sup 7903  df-oi 7938  df-card 8323  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10213  df-nn 10543  df-2 10600  df-3 10601  df-4 10602  df-n0 10802  df-z 10871  df-uz 11091  df-q 11192  df-rp 11230  df-xneg 11327  df-xadd 11328  df-xmul 11329  df-ico 11544  df-fz 11682  df-fzo 11804  df-fl 11908  df-seq 12087  df-exp 12146  df-hash 12385  df-cj 12911  df-re 12912  df-im 12913  df-sqrt 13047  df-abs 13048  df-limsup 13273  df-clim 13290  df-rlim 13291  df-sum 13488  df-topgen 14718  df-psmet 18285  df-xmet 18286  df-met 18287  df-bl 18288  df-mopn 18289  df-top 19272  df-bases 19274  df-topon 19275  df-lm 19603  df-cau 21568  df-rrn 30297
This theorem is referenced by:  rrncms  30304
  Copyright terms: Public domain W3C validator