Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rr19.3v Structured version   Unicode version

Theorem rr19.3v 3208
 Description: Restricted quantifier version of Theorem 19.3 of [Margaris] p. 89. We don't need the nonempty class condition of r19.3rzv 3882 when there is an outer quantifier. (Contributed by NM, 25-Oct-2012.)
Assertion
Ref Expression
rr19.3v
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem rr19.3v
StepHypRef Expression
1 biidd 237 . . . 4
21rspcv 3175 . . 3
32ralimia 2817 . 2
4 ax-1 6 . . . 4
54ralrimiv 2828 . . 3
65ralimi 2819 . 2
73, 6impbii 188 1
 Colors of variables: wff setvar class Syntax hints:   wb 184   wcel 1758  wral 2799 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ral 2804  df-v 3080 This theorem is referenced by:  ispos2  15238
 Copyright terms: Public domain W3C validator