MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rr19.28v Structured version   Unicode version

Theorem rr19.28v 3239
Description: Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. We don't need the nonempty class condition of r19.28zv 3916 when there is an outer quantifier. (Contributed by NM, 29-Oct-2012.)
Assertion
Ref Expression
rr19.28v  |-  ( A. x  e.  A  A. y  e.  A  ( ph  /\  ps )  <->  A. x  e.  A  ( ph  /\ 
A. y  e.  A  ps ) )
Distinct variable groups:    y, A    x, y    ph, y
Allowed substitution hints:    ph( x)    ps( x, y)    A( x)

Proof of Theorem rr19.28v
StepHypRef Expression
1 simpl 457 . . . . . 6  |-  ( (
ph  /\  ps )  ->  ph )
21ralimi 2850 . . . . 5  |-  ( A. y  e.  A  ( ph  /\  ps )  ->  A. y  e.  A  ph )
3 biidd 237 . . . . . 6  |-  ( y  =  x  ->  ( ph 
<-> 
ph ) )
43rspcv 3203 . . . . 5  |-  ( x  e.  A  ->  ( A. y  e.  A  ph 
->  ph ) )
52, 4syl5 32 . . . 4  |-  ( x  e.  A  ->  ( A. y  e.  A  ( ph  /\  ps )  ->  ph ) )
6 simpr 461 . . . . . 6  |-  ( (
ph  /\  ps )  ->  ps )
76ralimi 2850 . . . . 5  |-  ( A. y  e.  A  ( ph  /\  ps )  ->  A. y  e.  A  ps )
87a1i 11 . . . 4  |-  ( x  e.  A  ->  ( A. y  e.  A  ( ph  /\  ps )  ->  A. y  e.  A  ps ) )
95, 8jcad 533 . . 3  |-  ( x  e.  A  ->  ( A. y  e.  A  ( ph  /\  ps )  ->  ( ph  /\  A. y  e.  A  ps ) ) )
109ralimia 2848 . 2  |-  ( A. x  e.  A  A. y  e.  A  ( ph  /\  ps )  ->  A. x  e.  A  ( ph  /\  A. y  e.  A  ps )
)
11 r19.28av 2989 . . 3  |-  ( (
ph  /\  A. y  e.  A  ps )  ->  A. y  e.  A  ( ph  /\  ps )
)
1211ralimi 2850 . 2  |-  ( A. x  e.  A  ( ph  /\  A. y  e.  A  ps )  ->  A. x  e.  A  A. y  e.  A  ( ph  /\  ps )
)
1310, 12impbii 188 1  |-  ( A. x  e.  A  A. y  e.  A  ( ph  /\  ps )  <->  A. x  e.  A  ( ph  /\ 
A. y  e.  A  ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    e. wcel 1762   A.wral 2807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ral 2812  df-v 3108
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator