Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rr19.28v Structured version   Unicode version

Theorem rr19.28v 3226
 Description: Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. We don't need the nonempty class condition of r19.28zv 3906 when there is an outer quantifier. (Contributed by NM, 29-Oct-2012.)
Assertion
Ref Expression
rr19.28v
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   ()   (,)   ()

Proof of Theorem rr19.28v
StepHypRef Expression
1 simpl 457 . . . . . 6
21ralimi 2834 . . . . 5
3 biidd 237 . . . . . 6
43rspcv 3190 . . . . 5
52, 4syl5 32 . . . 4
6 simpr 461 . . . . . 6
76ralimi 2834 . . . . 5
87a1i 11 . . . 4
95, 8jcad 533 . . 3
109ralimia 2832 . 2
11 r19.28av 2975 . . 3
1211ralimi 2834 . 2
1310, 12impbii 188 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wa 369   wcel 1802  wral 2791 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ral 2796  df-v 3095 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator