MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem9 Structured version   Unicode version

Theorem rpnnen2lem9 13833
Description: Lemma for rpnnen2 13836. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypothesis
Ref Expression
rpnnen2.1  |-  F  =  ( x  e.  ~P NN  |->  ( n  e.  NN  |->  if ( n  e.  x ,  ( ( 1  /  3
) ^ n ) ,  0 ) ) )
Assertion
Ref Expression
rpnnen2lem9  |-  ( M  e.  NN  ->  sum_ k  e.  ( ZZ>= `  M )
( ( F `  ( NN  \  { M } ) ) `  k )  =  ( 0  +  ( ( ( 1  /  3
) ^ ( M  +  1 ) )  /  ( 1  -  ( 1  /  3
) ) ) ) )
Distinct variable groups:    x, n, k    k, F    k, M, n, x
Allowed substitution hints:    F( x, n)

Proof of Theorem rpnnen2lem9
StepHypRef Expression
1 eqid 2443 . . 3  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
2 nnz 10892 . . 3  |-  ( M  e.  NN  ->  M  e.  ZZ )
3 eqidd 2444 . . 3  |-  ( ( M  e.  NN  /\  k  e.  ( ZZ>= `  M ) )  -> 
( ( F `  ( NN  \  { M } ) ) `  k )  =  ( ( F `  ( NN  \  { M }
) ) `  k
) )
4 eluznn 11161 . . . 4  |-  ( ( M  e.  NN  /\  k  e.  ( ZZ>= `  M ) )  -> 
k  e.  NN )
5 difss 3616 . . . . . . 7  |-  ( NN 
\  { M }
)  C_  NN
6 rpnnen2.1 . . . . . . . 8  |-  F  =  ( x  e.  ~P NN  |->  ( n  e.  NN  |->  if ( n  e.  x ,  ( ( 1  /  3
) ^ n ) ,  0 ) ) )
76rpnnen2lem2 13826 . . . . . . 7  |-  ( ( NN  \  { M } )  C_  NN  ->  ( F `  ( NN  \  { M }
) ) : NN --> RR )
85, 7ax-mp 5 . . . . . 6  |-  ( F `
 ( NN  \  { M } ) ) : NN --> RR
98ffvelrni 6015 . . . . 5  |-  ( k  e.  NN  ->  (
( F `  ( NN  \  { M }
) ) `  k
)  e.  RR )
109recnd 9625 . . . 4  |-  ( k  e.  NN  ->  (
( F `  ( NN  \  { M }
) ) `  k
)  e.  CC )
114, 10syl 16 . . 3  |-  ( ( M  e.  NN  /\  k  e.  ( ZZ>= `  M ) )  -> 
( ( F `  ( NN  \  { M } ) ) `  k )  e.  CC )
126rpnnen2lem5 13829 . . . 4  |-  ( ( ( NN  \  { M } )  C_  NN  /\  M  e.  NN )  ->  seq M (  +  ,  ( F `  ( NN  \  { M } ) ) )  e.  dom  ~~>  )
135, 12mpan 670 . . 3  |-  ( M  e.  NN  ->  seq M (  +  , 
( F `  ( NN  \  { M }
) ) )  e. 
dom 
~~>  )
141, 2, 3, 11, 13isum1p 13632 . 2  |-  ( M  e.  NN  ->  sum_ k  e.  ( ZZ>= `  M )
( ( F `  ( NN  \  { M } ) ) `  k )  =  ( ( ( F `  ( NN  \  { M } ) ) `  M )  +  sum_ k  e.  ( ZZ>= `  ( M  +  1
) ) ( ( F `  ( NN 
\  { M }
) ) `  k
) ) )
156rpnnen2lem1 13825 . . . . 5  |-  ( ( ( NN  \  { M } )  C_  NN  /\  M  e.  NN )  ->  ( ( F `
 ( NN  \  { M } ) ) `
 M )  =  if ( M  e.  ( NN  \  { M } ) ,  ( ( 1  /  3
) ^ M ) ,  0 ) )
165, 15mpan 670 . . . 4  |-  ( M  e.  NN  ->  (
( F `  ( NN  \  { M }
) ) `  M
)  =  if ( M  e.  ( NN 
\  { M }
) ,  ( ( 1  /  3 ) ^ M ) ,  0 ) )
17 neldifsnd 4143 . . . . 5  |-  ( M  e.  NN  ->  -.  M  e.  ( NN  \  { M } ) )
1817iffalsed 3937 . . . 4  |-  ( M  e.  NN  ->  if ( M  e.  ( NN  \  { M }
) ,  ( ( 1  /  3 ) ^ M ) ,  0 )  =  0 )
1916, 18eqtrd 2484 . . 3  |-  ( M  e.  NN  ->  (
( F `  ( NN  \  { M }
) ) `  M
)  =  0 )
20 eqid 2443 . . . 4  |-  ( ZZ>= `  ( M  +  1
) )  =  (
ZZ>= `  ( M  + 
1 ) )
21 peano2nn 10554 . . . . 5  |-  ( M  e.  NN  ->  ( M  +  1 )  e.  NN )
2221nnzd 10973 . . . 4  |-  ( M  e.  NN  ->  ( M  +  1 )  e.  ZZ )
23 eqidd 2444 . . . 4  |-  ( ( M  e.  NN  /\  k  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
( ( F `  ( NN  \  { M } ) ) `  k )  =  ( ( F `  ( NN  \  { M }
) ) `  k
) )
24 eluznn 11161 . . . . . 6  |-  ( ( ( M  +  1 )  e.  NN  /\  k  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
k  e.  NN )
2521, 24sylan 471 . . . . 5  |-  ( ( M  e.  NN  /\  k  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
k  e.  NN )
2625, 10syl 16 . . . 4  |-  ( ( M  e.  NN  /\  k  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
( ( F `  ( NN  \  { M } ) ) `  k )  e.  CC )
27 1re 9598 . . . . . . . 8  |-  1  e.  RR
28 3nn 10700 . . . . . . . 8  |-  3  e.  NN
29 nndivre 10577 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  3  e.  NN )  ->  ( 1  /  3
)  e.  RR )
3027, 28, 29mp2an 672 . . . . . . 7  |-  ( 1  /  3 )  e.  RR
3130recni 9611 . . . . . 6  |-  ( 1  /  3 )  e.  CC
3231a1i 11 . . . . 5  |-  ( M  e.  NN  ->  (
1  /  3 )  e.  CC )
33 0re 9599 . . . . . . . . 9  |-  0  e.  RR
34 3re 10615 . . . . . . . . . 10  |-  3  e.  RR
35 3pos 10635 . . . . . . . . . 10  |-  0  <  3
3634, 35recgt0ii 10457 . . . . . . . . 9  |-  0  <  ( 1  /  3
)
3733, 30, 36ltleii 9710 . . . . . . . 8  |-  0  <_  ( 1  /  3
)
38 absid 13108 . . . . . . . 8  |-  ( ( ( 1  /  3
)  e.  RR  /\  0  <_  ( 1  / 
3 ) )  -> 
( abs `  (
1  /  3 ) )  =  ( 1  /  3 ) )
3930, 37, 38mp2an 672 . . . . . . 7  |-  ( abs `  ( 1  /  3
) )  =  ( 1  /  3 )
40 1lt3 10710 . . . . . . . 8  |-  1  <  3
41 recgt1 10447 . . . . . . . . 9  |-  ( ( 3  e.  RR  /\  0  <  3 )  -> 
( 1  <  3  <->  ( 1  /  3 )  <  1 ) )
4234, 35, 41mp2an 672 . . . . . . . 8  |-  ( 1  <  3  <->  ( 1  /  3 )  <  1 )
4340, 42mpbi 208 . . . . . . 7  |-  ( 1  /  3 )  <  1
4439, 43eqbrtri 4456 . . . . . 6  |-  ( abs `  ( 1  /  3
) )  <  1
4544a1i 11 . . . . 5  |-  ( M  e.  NN  ->  ( abs `  ( 1  / 
3 ) )  <  1 )
4621nnnn0d 10858 . . . . 5  |-  ( M  e.  NN  ->  ( M  +  1 )  e.  NN0 )
476rpnnen2lem1 13825 . . . . . . . 8  |-  ( ( ( NN  \  { M } )  C_  NN  /\  k  e.  NN )  ->  ( ( F `
 ( NN  \  { M } ) ) `
 k )  =  if ( k  e.  ( NN  \  { M } ) ,  ( ( 1  /  3
) ^ k ) ,  0 ) )
485, 47mpan 670 . . . . . . 7  |-  ( k  e.  NN  ->  (
( F `  ( NN  \  { M }
) ) `  k
)  =  if ( k  e.  ( NN 
\  { M }
) ,  ( ( 1  /  3 ) ^ k ) ,  0 ) )
4925, 48syl 16 . . . . . 6  |-  ( ( M  e.  NN  /\  k  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
( ( F `  ( NN  \  { M } ) ) `  k )  =  if ( k  e.  ( NN  \  { M } ) ,  ( ( 1  /  3
) ^ k ) ,  0 ) )
50 nnre 10549 . . . . . . . . . 10  |-  ( M  e.  NN  ->  M  e.  RR )
5150adantr 465 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  k  e.  ( ZZ>= `  ( M  +  1
) ) )  ->  M  e.  RR )
52 eluzle 11102 . . . . . . . . . . 11  |-  ( k  e.  ( ZZ>= `  ( M  +  1 ) )  ->  ( M  +  1 )  <_ 
k )
5352adantl 466 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  k  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
( M  +  1 )  <_  k )
54 nnltp1le 10925 . . . . . . . . . . 11  |-  ( ( M  e.  NN  /\  k  e.  NN )  ->  ( M  <  k  <->  ( M  +  1 )  <_  k ) )
5525, 54syldan 470 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  k  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
( M  <  k  <->  ( M  +  1 )  <_  k ) )
5653, 55mpbird 232 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  k  e.  ( ZZ>= `  ( M  +  1
) ) )  ->  M  <  k )
5751, 56gtned 9723 . . . . . . . 8  |-  ( ( M  e.  NN  /\  k  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
k  =/=  M )
58 eldifsn 4140 . . . . . . . 8  |-  ( k  e.  ( NN  \  { M } )  <->  ( k  e.  NN  /\  k  =/= 
M ) )
5925, 57, 58sylanbrc 664 . . . . . . 7  |-  ( ( M  e.  NN  /\  k  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
k  e.  ( NN 
\  { M }
) )
6059iftrued 3934 . . . . . 6  |-  ( ( M  e.  NN  /\  k  e.  ( ZZ>= `  ( M  +  1
) ) )  ->  if ( k  e.  ( NN  \  { M } ) ,  ( ( 1  /  3
) ^ k ) ,  0 )  =  ( ( 1  / 
3 ) ^ k
) )
6149, 60eqtrd 2484 . . . . 5  |-  ( ( M  e.  NN  /\  k  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
( ( F `  ( NN  \  { M } ) ) `  k )  =  ( ( 1  /  3
) ^ k ) )
6232, 45, 46, 61geolim2 13659 . . . 4  |-  ( M  e.  NN  ->  seq ( M  +  1
) (  +  , 
( F `  ( NN  \  { M }
) ) )  ~~>  ( ( ( 1  /  3
) ^ ( M  +  1 ) )  /  ( 1  -  ( 1  /  3
) ) ) )
6320, 22, 23, 26, 62isumclim 13551 . . 3  |-  ( M  e.  NN  ->  sum_ k  e.  ( ZZ>= `  ( M  +  1 ) ) ( ( F `  ( NN  \  { M } ) ) `  k )  =  ( ( ( 1  / 
3 ) ^ ( M  +  1 ) )  /  ( 1  -  ( 1  / 
3 ) ) ) )
6419, 63oveq12d 6299 . 2  |-  ( M  e.  NN  ->  (
( ( F `  ( NN  \  { M } ) ) `  M )  +  sum_ k  e.  ( ZZ>= `  ( M  +  1
) ) ( ( F `  ( NN 
\  { M }
) ) `  k
) )  =  ( 0  +  ( ( ( 1  /  3
) ^ ( M  +  1 ) )  /  ( 1  -  ( 1  /  3
) ) ) ) )
6514, 64eqtrd 2484 1  |-  ( M  e.  NN  ->  sum_ k  e.  ( ZZ>= `  M )
( ( F `  ( NN  \  { M } ) ) `  k )  =  ( 0  +  ( ( ( 1  /  3
) ^ ( M  +  1 ) )  /  ( 1  -  ( 1  /  3
) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1383    e. wcel 1804    =/= wne 2638    \ cdif 3458    C_ wss 3461   ifcif 3926   ~Pcpw 3997   {csn 4014   class class class wbr 4437    |-> cmpt 4495   dom cdm 4989   -->wf 5574   ` cfv 5578  (class class class)co 6281   CCcc 9493   RRcr 9494   0cc0 9495   1c1 9496    + caddc 9498    < clt 9631    <_ cle 9632    - cmin 9810    / cdiv 10212   NNcn 10542   3c3 10592   ZZ>=cuz 11090    seqcseq 12086   ^cexp 12145   abscabs 13046    ~~> cli 13286   sum_csu 13487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-inf2 8061  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-fal 1389  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-se 4829  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-isom 5587  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-1o 7132  df-oadd 7136  df-er 7313  df-pm 7425  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-sup 7903  df-oi 7938  df-card 8323  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10213  df-nn 10543  df-2 10600  df-3 10601  df-n0 10802  df-z 10871  df-uz 11091  df-rp 11230  df-ico 11544  df-fz 11682  df-fzo 11804  df-fl 11908  df-seq 12087  df-exp 12146  df-hash 12385  df-cj 12911  df-re 12912  df-im 12913  df-sqrt 13047  df-abs 13048  df-limsup 13273  df-clim 13290  df-rlim 13291  df-sum 13488
This theorem is referenced by:  rpnnen2lem11  13835
  Copyright terms: Public domain W3C validator