MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem9 Structured version   Unicode version

Theorem rpnnen2lem9 13813
Description: Lemma for rpnnen2 13816. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypothesis
Ref Expression
rpnnen2.1  |-  F  =  ( x  e.  ~P NN  |->  ( n  e.  NN  |->  if ( n  e.  x ,  ( ( 1  /  3
) ^ n ) ,  0 ) ) )
Assertion
Ref Expression
rpnnen2lem9  |-  ( M  e.  NN  ->  sum_ k  e.  ( ZZ>= `  M )
( ( F `  ( NN  \  { M } ) ) `  k )  =  ( 0  +  ( ( ( 1  /  3
) ^ ( M  +  1 ) )  /  ( 1  -  ( 1  /  3
) ) ) ) )
Distinct variable groups:    x, n, k    k, F    k, M, n, x
Allowed substitution hints:    F( x, n)

Proof of Theorem rpnnen2lem9
StepHypRef Expression
1 eqid 2467 . . 3  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
2 nnz 10882 . . 3  |-  ( M  e.  NN  ->  M  e.  ZZ )
3 eqidd 2468 . . 3  |-  ( ( M  e.  NN  /\  k  e.  ( ZZ>= `  M ) )  -> 
( ( F `  ( NN  \  { M } ) ) `  k )  =  ( ( F `  ( NN  \  { M }
) ) `  k
) )
4 eluznn 11148 . . . 4  |-  ( ( M  e.  NN  /\  k  e.  ( ZZ>= `  M ) )  -> 
k  e.  NN )
5 difss 3631 . . . . . . 7  |-  ( NN 
\  { M }
)  C_  NN
6 rpnnen2.1 . . . . . . . 8  |-  F  =  ( x  e.  ~P NN  |->  ( n  e.  NN  |->  if ( n  e.  x ,  ( ( 1  /  3
) ^ n ) ,  0 ) ) )
76rpnnen2lem2 13806 . . . . . . 7  |-  ( ( NN  \  { M } )  C_  NN  ->  ( F `  ( NN  \  { M }
) ) : NN --> RR )
85, 7ax-mp 5 . . . . . 6  |-  ( F `
 ( NN  \  { M } ) ) : NN --> RR
98ffvelrni 6018 . . . . 5  |-  ( k  e.  NN  ->  (
( F `  ( NN  \  { M }
) ) `  k
)  e.  RR )
109recnd 9618 . . . 4  |-  ( k  e.  NN  ->  (
( F `  ( NN  \  { M }
) ) `  k
)  e.  CC )
114, 10syl 16 . . 3  |-  ( ( M  e.  NN  /\  k  e.  ( ZZ>= `  M ) )  -> 
( ( F `  ( NN  \  { M } ) ) `  k )  e.  CC )
126rpnnen2lem5 13809 . . . 4  |-  ( ( ( NN  \  { M } )  C_  NN  /\  M  e.  NN )  ->  seq M (  +  ,  ( F `  ( NN  \  { M } ) ) )  e.  dom  ~~>  )
135, 12mpan 670 . . 3  |-  ( M  e.  NN  ->  seq M (  +  , 
( F `  ( NN  \  { M }
) ) )  e. 
dom 
~~>  )
141, 2, 3, 11, 13isum1p 13612 . 2  |-  ( M  e.  NN  ->  sum_ k  e.  ( ZZ>= `  M )
( ( F `  ( NN  \  { M } ) ) `  k )  =  ( ( ( F `  ( NN  \  { M } ) ) `  M )  +  sum_ k  e.  ( ZZ>= `  ( M  +  1
) ) ( ( F `  ( NN 
\  { M }
) ) `  k
) ) )
156rpnnen2lem1 13805 . . . . 5  |-  ( ( ( NN  \  { M } )  C_  NN  /\  M  e.  NN )  ->  ( ( F `
 ( NN  \  { M } ) ) `
 M )  =  if ( M  e.  ( NN  \  { M } ) ,  ( ( 1  /  3
) ^ M ) ,  0 ) )
165, 15mpan 670 . . . 4  |-  ( M  e.  NN  ->  (
( F `  ( NN  \  { M }
) ) `  M
)  =  if ( M  e.  ( NN 
\  { M }
) ,  ( ( 1  /  3 ) ^ M ) ,  0 ) )
17 neldifsnd 4155 . . . . 5  |-  ( M  e.  NN  ->  -.  M  e.  ( NN  \  { M } ) )
18 iffalse 3948 . . . . 5  |-  ( -.  M  e.  ( NN 
\  { M }
)  ->  if ( M  e.  ( NN  \  { M } ) ,  ( ( 1  /  3 ) ^ M ) ,  0 )  =  0 )
1917, 18syl 16 . . . 4  |-  ( M  e.  NN  ->  if ( M  e.  ( NN  \  { M }
) ,  ( ( 1  /  3 ) ^ M ) ,  0 )  =  0 )
2016, 19eqtrd 2508 . . 3  |-  ( M  e.  NN  ->  (
( F `  ( NN  \  { M }
) ) `  M
)  =  0 )
21 eqid 2467 . . . 4  |-  ( ZZ>= `  ( M  +  1
) )  =  (
ZZ>= `  ( M  + 
1 ) )
22 peano2nn 10544 . . . . 5  |-  ( M  e.  NN  ->  ( M  +  1 )  e.  NN )
2322nnzd 10961 . . . 4  |-  ( M  e.  NN  ->  ( M  +  1 )  e.  ZZ )
24 eqidd 2468 . . . 4  |-  ( ( M  e.  NN  /\  k  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
( ( F `  ( NN  \  { M } ) ) `  k )  =  ( ( F `  ( NN  \  { M }
) ) `  k
) )
25 eluznn 11148 . . . . . 6  |-  ( ( ( M  +  1 )  e.  NN  /\  k  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
k  e.  NN )
2622, 25sylan 471 . . . . 5  |-  ( ( M  e.  NN  /\  k  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
k  e.  NN )
2726, 10syl 16 . . . 4  |-  ( ( M  e.  NN  /\  k  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
( ( F `  ( NN  \  { M } ) ) `  k )  e.  CC )
28 1re 9591 . . . . . . . 8  |-  1  e.  RR
29 3nn 10690 . . . . . . . 8  |-  3  e.  NN
30 nndivre 10567 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  3  e.  NN )  ->  ( 1  /  3
)  e.  RR )
3128, 29, 30mp2an 672 . . . . . . 7  |-  ( 1  /  3 )  e.  RR
3231recni 9604 . . . . . 6  |-  ( 1  /  3 )  e.  CC
3332a1i 11 . . . . 5  |-  ( M  e.  NN  ->  (
1  /  3 )  e.  CC )
34 0re 9592 . . . . . . . . 9  |-  0  e.  RR
35 3re 10605 . . . . . . . . . 10  |-  3  e.  RR
36 3pos 10625 . . . . . . . . . 10  |-  0  <  3
3735, 36recgt0ii 10447 . . . . . . . . 9  |-  0  <  ( 1  /  3
)
3834, 31, 37ltleii 9703 . . . . . . . 8  |-  0  <_  ( 1  /  3
)
39 absid 13088 . . . . . . . 8  |-  ( ( ( 1  /  3
)  e.  RR  /\  0  <_  ( 1  / 
3 ) )  -> 
( abs `  (
1  /  3 ) )  =  ( 1  /  3 ) )
4031, 38, 39mp2an 672 . . . . . . 7  |-  ( abs `  ( 1  /  3
) )  =  ( 1  /  3 )
41 1lt3 10700 . . . . . . . 8  |-  1  <  3
42 recgt1 10437 . . . . . . . . 9  |-  ( ( 3  e.  RR  /\  0  <  3 )  -> 
( 1  <  3  <->  ( 1  /  3 )  <  1 ) )
4335, 36, 42mp2an 672 . . . . . . . 8  |-  ( 1  <  3  <->  ( 1  /  3 )  <  1 )
4441, 43mpbi 208 . . . . . . 7  |-  ( 1  /  3 )  <  1
4540, 44eqbrtri 4466 . . . . . 6  |-  ( abs `  ( 1  /  3
) )  <  1
4645a1i 11 . . . . 5  |-  ( M  e.  NN  ->  ( abs `  ( 1  / 
3 ) )  <  1 )
4722nnnn0d 10848 . . . . 5  |-  ( M  e.  NN  ->  ( M  +  1 )  e.  NN0 )
486rpnnen2lem1 13805 . . . . . . . 8  |-  ( ( ( NN  \  { M } )  C_  NN  /\  k  e.  NN )  ->  ( ( F `
 ( NN  \  { M } ) ) `
 k )  =  if ( k  e.  ( NN  \  { M } ) ,  ( ( 1  /  3
) ^ k ) ,  0 ) )
495, 48mpan 670 . . . . . . 7  |-  ( k  e.  NN  ->  (
( F `  ( NN  \  { M }
) ) `  k
)  =  if ( k  e.  ( NN 
\  { M }
) ,  ( ( 1  /  3 ) ^ k ) ,  0 ) )
5026, 49syl 16 . . . . . 6  |-  ( ( M  e.  NN  /\  k  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
( ( F `  ( NN  \  { M } ) ) `  k )  =  if ( k  e.  ( NN  \  { M } ) ,  ( ( 1  /  3
) ^ k ) ,  0 ) )
51 nnre 10539 . . . . . . . . . 10  |-  ( M  e.  NN  ->  M  e.  RR )
5251adantr 465 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  k  e.  ( ZZ>= `  ( M  +  1
) ) )  ->  M  e.  RR )
53 eluzle 11090 . . . . . . . . . . 11  |-  ( k  e.  ( ZZ>= `  ( M  +  1 ) )  ->  ( M  +  1 )  <_ 
k )
5453adantl 466 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  k  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
( M  +  1 )  <_  k )
55 nnltp1le 10914 . . . . . . . . . . 11  |-  ( ( M  e.  NN  /\  k  e.  NN )  ->  ( M  <  k  <->  ( M  +  1 )  <_  k ) )
5626, 55syldan 470 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  k  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
( M  <  k  <->  ( M  +  1 )  <_  k ) )
5754, 56mpbird 232 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  k  e.  ( ZZ>= `  ( M  +  1
) ) )  ->  M  <  k )
5852, 57gtned 9715 . . . . . . . 8  |-  ( ( M  e.  NN  /\  k  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
k  =/=  M )
59 eldifsn 4152 . . . . . . . 8  |-  ( k  e.  ( NN  \  { M } )  <->  ( k  e.  NN  /\  k  =/= 
M ) )
6026, 58, 59sylanbrc 664 . . . . . . 7  |-  ( ( M  e.  NN  /\  k  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
k  e.  ( NN 
\  { M }
) )
61 iftrue 3945 . . . . . . 7  |-  ( k  e.  ( NN  \  { M } )  ->  if ( k  e.  ( NN  \  { M } ) ,  ( ( 1  /  3
) ^ k ) ,  0 )  =  ( ( 1  / 
3 ) ^ k
) )
6260, 61syl 16 . . . . . 6  |-  ( ( M  e.  NN  /\  k  e.  ( ZZ>= `  ( M  +  1
) ) )  ->  if ( k  e.  ( NN  \  { M } ) ,  ( ( 1  /  3
) ^ k ) ,  0 )  =  ( ( 1  / 
3 ) ^ k
) )
6350, 62eqtrd 2508 . . . . 5  |-  ( ( M  e.  NN  /\  k  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
( ( F `  ( NN  \  { M } ) ) `  k )  =  ( ( 1  /  3
) ^ k ) )
6433, 46, 47, 63geolim2 13639 . . . 4  |-  ( M  e.  NN  ->  seq ( M  +  1
) (  +  , 
( F `  ( NN  \  { M }
) ) )  ~~>  ( ( ( 1  /  3
) ^ ( M  +  1 ) )  /  ( 1  -  ( 1  /  3
) ) ) )
6521, 23, 24, 27, 64isumclim 13531 . . 3  |-  ( M  e.  NN  ->  sum_ k  e.  ( ZZ>= `  ( M  +  1 ) ) ( ( F `  ( NN  \  { M } ) ) `  k )  =  ( ( ( 1  / 
3 ) ^ ( M  +  1 ) )  /  ( 1  -  ( 1  / 
3 ) ) ) )
6620, 65oveq12d 6300 . 2  |-  ( M  e.  NN  ->  (
( ( F `  ( NN  \  { M } ) ) `  M )  +  sum_ k  e.  ( ZZ>= `  ( M  +  1
) ) ( ( F `  ( NN 
\  { M }
) ) `  k
) )  =  ( 0  +  ( ( ( 1  /  3
) ^ ( M  +  1 ) )  /  ( 1  -  ( 1  /  3
) ) ) ) )
6714, 66eqtrd 2508 1  |-  ( M  e.  NN  ->  sum_ k  e.  ( ZZ>= `  M )
( ( F `  ( NN  \  { M } ) ) `  k )  =  ( 0  +  ( ( ( 1  /  3
) ^ ( M  +  1 ) )  /  ( 1  -  ( 1  /  3
) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662    \ cdif 3473    C_ wss 3476   ifcif 3939   ~Pcpw 4010   {csn 4027   class class class wbr 4447    |-> cmpt 4505   dom cdm 4999   -->wf 5582   ` cfv 5586  (class class class)co 6282   CCcc 9486   RRcr 9487   0cc0 9488   1c1 9489    + caddc 9491    < clt 9624    <_ cle 9625    - cmin 9801    / cdiv 10202   NNcn 10532   3c3 10582   ZZ>=cuz 11078    seqcseq 12071   ^cexp 12130   abscabs 13026    ~~> cli 13266   sum_csu 13467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-pm 7420  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-sup 7897  df-oi 7931  df-card 8316  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11079  df-rp 11217  df-ico 11531  df-fz 11669  df-fzo 11789  df-fl 11893  df-seq 12072  df-exp 12131  df-hash 12370  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-limsup 13253  df-clim 13270  df-rlim 13271  df-sum 13468
This theorem is referenced by:  rpnnen2lem11  13815
  Copyright terms: Public domain W3C validator