MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem11 Structured version   Unicode version

Theorem rpnnen2lem11 13528
Description: Lemma for rpnnen2 13529. (Contributed by Mario Carneiro, 13-May-2013.)
Hypotheses
Ref Expression
rpnnen2.1  |-  F  =  ( x  e.  ~P NN  |->  ( n  e.  NN  |->  if ( n  e.  x ,  ( ( 1  /  3
) ^ n ) ,  0 ) ) )
rpnnen2.2  |-  ( ph  ->  A  C_  NN )
rpnnen2.3  |-  ( ph  ->  B  C_  NN )
rpnnen2.4  |-  ( ph  ->  m  e.  ( A 
\  B ) )
rpnnen2.5  |-  ( ph  ->  A. n  e.  NN  ( n  <  m  -> 
( n  e.  A  <->  n  e.  B ) ) )
rpnnen2.6  |-  ( ps  <->  sum_ k  e.  NN  (
( F `  A
) `  k )  =  sum_ k  e.  NN  ( ( F `  B ) `  k
) )
Assertion
Ref Expression
rpnnen2lem11  |-  ( ph  ->  -.  ps )
Distinct variable groups:    m, n, x, k    A, k, n, x    B, k, n, x   
k, m, F    ph, k
Allowed substitution hints:    ph( x, m, n)    ps( x, k, m, n)    A( m)    B( m)    F( x, n)

Proof of Theorem rpnnen2lem11
StepHypRef Expression
1 rpnnen2.3 . . . 4  |-  ( ph  ->  B  C_  NN )
2 rpnnen2.2 . . . . 5  |-  ( ph  ->  A  C_  NN )
3 rpnnen2.4 . . . . 5  |-  ( ph  ->  m  e.  ( A 
\  B ) )
4 eldifi 3499 . . . . . 6  |-  ( m  e.  ( A  \  B )  ->  m  e.  A )
5 ssel2 3372 . . . . . 6  |-  ( ( A  C_  NN  /\  m  e.  A )  ->  m  e.  NN )
64, 5sylan2 474 . . . . 5  |-  ( ( A  C_  NN  /\  m  e.  ( A  \  B
) )  ->  m  e.  NN )
72, 3, 6syl2anc 661 . . . 4  |-  ( ph  ->  m  e.  NN )
8 rpnnen2.1 . . . . 5  |-  F  =  ( x  e.  ~P NN  |->  ( n  e.  NN  |->  if ( n  e.  x ,  ( ( 1  /  3
) ^ n ) ,  0 ) ) )
98rpnnen2lem6 13523 . . . 4  |-  ( ( B  C_  NN  /\  m  e.  NN )  ->  sum_ k  e.  ( ZZ>= `  m )
( ( F `  B ) `  k
)  e.  RR )
101, 7, 9syl2anc 661 . . 3  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  m ) ( ( F `  B
) `  k )  e.  RR )
11 3nn 10501 . . . . . 6  |-  3  e.  NN
12 nnrecre 10379 . . . . . 6  |-  ( 3  e.  NN  ->  (
1  /  3 )  e.  RR )
1311, 12ax-mp 5 . . . . 5  |-  ( 1  /  3 )  e.  RR
147nnnn0d 10657 . . . . 5  |-  ( ph  ->  m  e.  NN0 )
15 reexpcl 11903 . . . . 5  |-  ( ( ( 1  /  3
)  e.  RR  /\  m  e.  NN0 )  -> 
( ( 1  / 
3 ) ^ m
)  e.  RR )
1613, 14, 15sylancr 663 . . . 4  |-  ( ph  ->  ( ( 1  / 
3 ) ^ m
)  e.  RR )
178rpnnen2lem6 13523 . . . . 5  |-  ( ( A  C_  NN  /\  m  e.  NN )  ->  sum_ k  e.  ( ZZ>= `  m )
( ( F `  A ) `  k
)  e.  RR )
182, 7, 17syl2anc 661 . . . 4  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  m ) ( ( F `  A
) `  k )  e.  RR )
19 nnrp 11021 . . . . . . . . 9  |-  ( 3  e.  NN  ->  3  e.  RR+ )
20 rpreccl 11035 . . . . . . . . 9  |-  ( 3  e.  RR+  ->  ( 1  /  3 )  e.  RR+ )
2111, 19, 20mp2b 10 . . . . . . . 8  |-  ( 1  /  3 )  e.  RR+
227nnzd 10767 . . . . . . . 8  |-  ( ph  ->  m  e.  ZZ )
23 rpexpcl 11905 . . . . . . . 8  |-  ( ( ( 1  /  3
)  e.  RR+  /\  m  e.  ZZ )  ->  (
( 1  /  3
) ^ m )  e.  RR+ )
2421, 22, 23sylancr 663 . . . . . . 7  |-  ( ph  ->  ( ( 1  / 
3 ) ^ m
)  e.  RR+ )
2524rpred 11048 . . . . . 6  |-  ( ph  ->  ( ( 1  / 
3 ) ^ m
)  e.  RR )
2625rehalfcld 10592 . . . . 5  |-  ( ph  ->  ( ( ( 1  /  3 ) ^
m )  /  2
)  e.  RR )
273snssd 4039 . . . . . . . . 9  |-  ( ph  ->  { m }  C_  ( A  \  B ) )
282ssdifd 3513 . . . . . . . . 9  |-  ( ph  ->  ( A  \  B
)  C_  ( NN  \  B ) )
2927, 28sstrd 3387 . . . . . . . 8  |-  ( ph  ->  { m }  C_  ( NN  \  B ) )
307snssd 4039 . . . . . . . . 9  |-  ( ph  ->  { m }  C_  NN )
31 ssconb 3510 . . . . . . . . 9  |-  ( ( B  C_  NN  /\  {
m }  C_  NN )  ->  ( B  C_  ( NN  \  { m } )  <->  { m }  C_  ( NN  \  B ) ) )
321, 30, 31syl2anc 661 . . . . . . . 8  |-  ( ph  ->  ( B  C_  ( NN  \  { m }
)  <->  { m }  C_  ( NN  \  B ) ) )
3329, 32mpbird 232 . . . . . . 7  |-  ( ph  ->  B  C_  ( NN  \  { m } ) )
34 difssd 3505 . . . . . . 7  |-  ( ph  ->  ( NN  \  {
m } )  C_  NN )
358rpnnen2lem7 13524 . . . . . . 7  |-  ( ( B  C_  ( NN  \  { m } )  /\  ( NN  \  { m } ) 
C_  NN  /\  m  e.  NN )  ->  sum_ k  e.  ( ZZ>= `  m )
( ( F `  B ) `  k
)  <_  sum_ k  e.  ( ZZ>= `  m )
( ( F `  ( NN  \  { m } ) ) `  k ) )
3633, 34, 7, 35syl3anc 1218 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  m ) ( ( F `  B
) `  k )  <_ 
sum_ k  e.  (
ZZ>= `  m ) ( ( F `  ( NN  \  { m }
) ) `  k
) )
378rpnnen2lem9 13526 . . . . . . . 8  |-  ( m  e.  NN  ->  sum_ k  e.  ( ZZ>= `  m )
( ( F `  ( NN  \  { m } ) ) `  k )  =  ( 0  +  ( ( ( 1  /  3
) ^ ( m  +  1 ) )  /  ( 1  -  ( 1  /  3
) ) ) ) )
387, 37syl 16 . . . . . . 7  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  m ) ( ( F `  ( NN  \  { m }
) ) `  k
)  =  ( 0  +  ( ( ( 1  /  3 ) ^ ( m  + 
1 ) )  / 
( 1  -  (
1  /  3 ) ) ) ) )
3913recni 9419 . . . . . . . . . . . 12  |-  ( 1  /  3 )  e.  CC
40 expp1 11893 . . . . . . . . . . . 12  |-  ( ( ( 1  /  3
)  e.  CC  /\  m  e.  NN0 )  -> 
( ( 1  / 
3 ) ^ (
m  +  1 ) )  =  ( ( ( 1  /  3
) ^ m )  x.  ( 1  / 
3 ) ) )
4139, 14, 40sylancr 663 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 1  / 
3 ) ^ (
m  +  1 ) )  =  ( ( ( 1  /  3
) ^ m )  x.  ( 1  / 
3 ) ) )
4225recnd 9433 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 1  / 
3 ) ^ m
)  e.  CC )
43 3cn 10417 . . . . . . . . . . . . 13  |-  3  e.  CC
44 3ne0 10437 . . . . . . . . . . . . 13  |-  3  =/=  0
45 divrec 10031 . . . . . . . . . . . . 13  |-  ( ( ( ( 1  / 
3 ) ^ m
)  e.  CC  /\  3  e.  CC  /\  3  =/=  0 )  ->  (
( ( 1  / 
3 ) ^ m
)  /  3 )  =  ( ( ( 1  /  3 ) ^ m )  x.  ( 1  /  3
) ) )
4643, 44, 45mp3an23 1306 . . . . . . . . . . . 12  |-  ( ( ( 1  /  3
) ^ m )  e.  CC  ->  (
( ( 1  / 
3 ) ^ m
)  /  3 )  =  ( ( ( 1  /  3 ) ^ m )  x.  ( 1  /  3
) ) )
4742, 46syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( 1  /  3 ) ^
m )  /  3
)  =  ( ( ( 1  /  3
) ^ m )  x.  ( 1  / 
3 ) ) )
4841, 47eqtr4d 2478 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1  / 
3 ) ^ (
m  +  1 ) )  =  ( ( ( 1  /  3
) ^ m )  /  3 ) )
4948oveq1d 6127 . . . . . . . . 9  |-  ( ph  ->  ( ( ( 1  /  3 ) ^
( m  +  1 ) )  /  (
1  -  ( 1  /  3 ) ) )  =  ( ( ( ( 1  / 
3 ) ^ m
)  /  3 )  /  ( 1  -  ( 1  /  3
) ) ) )
50 ax-1cn 9361 . . . . . . . . . . . . 13  |-  1  e.  CC
5143, 44pm3.2i 455 . . . . . . . . . . . . 13  |-  ( 3  e.  CC  /\  3  =/=  0 )
52 divsubdir 10048 . . . . . . . . . . . . 13  |-  ( ( 3  e.  CC  /\  1  e.  CC  /\  (
3  e.  CC  /\  3  =/=  0 ) )  ->  ( ( 3  -  1 )  / 
3 )  =  ( ( 3  /  3
)  -  ( 1  /  3 ) ) )
5343, 50, 51, 52mp3an 1314 . . . . . . . . . . . 12  |-  ( ( 3  -  1 )  /  3 )  =  ( ( 3  / 
3 )  -  (
1  /  3 ) )
54 3m1e2 10459 . . . . . . . . . . . . 13  |-  ( 3  -  1 )  =  2
5554oveq1i 6122 . . . . . . . . . . . 12  |-  ( ( 3  -  1 )  /  3 )  =  ( 2  /  3
)
5643, 44dividi 10085 . . . . . . . . . . . . 13  |-  ( 3  /  3 )  =  1
5756oveq1i 6122 . . . . . . . . . . . 12  |-  ( ( 3  /  3 )  -  ( 1  / 
3 ) )  =  ( 1  -  (
1  /  3 ) )
5853, 55, 573eqtr3ri 2472 . . . . . . . . . . 11  |-  ( 1  -  ( 1  / 
3 ) )  =  ( 2  /  3
)
5958oveq2i 6123 . . . . . . . . . 10  |-  ( ( ( ( 1  / 
3 ) ^ m
)  /  3 )  /  ( 1  -  ( 1  /  3
) ) )  =  ( ( ( ( 1  /  3 ) ^ m )  / 
3 )  /  (
2  /  3 ) )
60 2cnne0 10557 . . . . . . . . . . . 12  |-  ( 2  e.  CC  /\  2  =/=  0 )
61 divcan7 10061 . . . . . . . . . . . 12  |-  ( ( ( ( 1  / 
3 ) ^ m
)  e.  CC  /\  ( 2  e.  CC  /\  2  =/=  0 )  /\  ( 3  e.  CC  /\  3  =/=  0 ) )  -> 
( ( ( ( 1  /  3 ) ^ m )  / 
3 )  /  (
2  /  3 ) )  =  ( ( ( 1  /  3
) ^ m )  /  2 ) )
6260, 51, 61mp3an23 1306 . . . . . . . . . . 11  |-  ( ( ( 1  /  3
) ^ m )  e.  CC  ->  (
( ( ( 1  /  3 ) ^
m )  /  3
)  /  ( 2  /  3 ) )  =  ( ( ( 1  /  3 ) ^ m )  / 
2 ) )
6342, 62syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( 1  /  3 ) ^ m )  / 
3 )  /  (
2  /  3 ) )  =  ( ( ( 1  /  3
) ^ m )  /  2 ) )
6459, 63syl5eq 2487 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( 1  /  3 ) ^ m )  / 
3 )  /  (
1  -  ( 1  /  3 ) ) )  =  ( ( ( 1  /  3
) ^ m )  /  2 ) )
6549, 64eqtrd 2475 . . . . . . . 8  |-  ( ph  ->  ( ( ( 1  /  3 ) ^
( m  +  1 ) )  /  (
1  -  ( 1  /  3 ) ) )  =  ( ( ( 1  /  3
) ^ m )  /  2 ) )
6665oveq2d 6128 . . . . . . 7  |-  ( ph  ->  ( 0  +  ( ( ( 1  / 
3 ) ^ (
m  +  1 ) )  /  ( 1  -  ( 1  / 
3 ) ) ) )  =  ( 0  +  ( ( ( 1  /  3 ) ^ m )  / 
2 ) ) )
6726recnd 9433 . . . . . . . 8  |-  ( ph  ->  ( ( ( 1  /  3 ) ^
m )  /  2
)  e.  CC )
6867addid2d 9591 . . . . . . 7  |-  ( ph  ->  ( 0  +  ( ( ( 1  / 
3 ) ^ m
)  /  2 ) )  =  ( ( ( 1  /  3
) ^ m )  /  2 ) )
6938, 66, 683eqtrd 2479 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  m ) ( ( F `  ( NN  \  { m }
) ) `  k
)  =  ( ( ( 1  /  3
) ^ m )  /  2 ) )
7036, 69breqtrd 4337 . . . . 5  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  m ) ( ( F `  B
) `  k )  <_  ( ( ( 1  /  3 ) ^
m )  /  2
) )
71 rphalflt 11038 . . . . . 6  |-  ( ( ( 1  /  3
) ^ m )  e.  RR+  ->  ( ( ( 1  /  3
) ^ m )  /  2 )  < 
( ( 1  / 
3 ) ^ m
) )
7224, 71syl 16 . . . . 5  |-  ( ph  ->  ( ( ( 1  /  3 ) ^
m )  /  2
)  <  ( (
1  /  3 ) ^ m ) )
7310, 26, 25, 70, 72lelttrd 9550 . . . 4  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  m ) ( ( F `  B
) `  k )  <  ( ( 1  / 
3 ) ^ m
) )
74 eluznn 10946 . . . . . . . . 9  |-  ( ( m  e.  NN  /\  k  e.  ( ZZ>= `  m ) )  -> 
k  e.  NN )
757, 74sylan 471 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  m )
)  ->  k  e.  NN )
768rpnnen2lem1 13518 . . . . . . . . 9  |-  ( ( { m }  C_  NN  /\  k  e.  NN )  ->  ( ( F `
 { m }
) `  k )  =  if ( k  e. 
{ m } , 
( ( 1  / 
3 ) ^ k
) ,  0 ) )
7730, 76sylan 471 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( F `  { m } ) `  k
)  =  if ( k  e.  { m } ,  ( (
1  /  3 ) ^ k ) ,  0 ) )
7875, 77syldan 470 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  m )
)  ->  ( ( F `  { m } ) `  k
)  =  if ( k  e.  { m } ,  ( (
1  /  3 ) ^ k ) ,  0 ) )
7978sumeq2dv 13201 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  m ) ( ( F `  {
m } ) `  k )  =  sum_ k  e.  ( ZZ>= `  m ) if ( k  e.  { m } ,  ( (
1  /  3 ) ^ k ) ,  0 ) )
80 uzid 10896 . . . . . . . . 9  |-  ( m  e.  ZZ  ->  m  e.  ( ZZ>= `  m )
)
8122, 80syl 16 . . . . . . . 8  |-  ( ph  ->  m  e.  ( ZZ>= `  m ) )
8281snssd 4039 . . . . . . 7  |-  ( ph  ->  { m }  C_  ( ZZ>= `  m )
)
83 vex 2996 . . . . . . . . 9  |-  m  e. 
_V
84 oveq2 6120 . . . . . . . . . 10  |-  ( k  =  m  ->  (
( 1  /  3
) ^ k )  =  ( ( 1  /  3 ) ^
m ) )
8584eleq1d 2509 . . . . . . . . 9  |-  ( k  =  m  ->  (
( ( 1  / 
3 ) ^ k
)  e.  CC  <->  ( (
1  /  3 ) ^ m )  e.  CC ) )
8683, 85ralsn 3936 . . . . . . . 8  |-  ( A. k  e.  { m }  ( ( 1  /  3 ) ^
k )  e.  CC  <->  ( ( 1  /  3
) ^ m )  e.  CC )
8742, 86sylibr 212 . . . . . . 7  |-  ( ph  ->  A. k  e.  {
m }  ( ( 1  /  3 ) ^ k )  e.  CC )
88 ssid 3396 . . . . . . . . 9  |-  ( ZZ>= `  m )  C_  ( ZZ>=
`  m )
8988a1i 11 . . . . . . . 8  |-  ( ph  ->  ( ZZ>= `  m )  C_  ( ZZ>= `  m )
)
9089orcd 392 . . . . . . 7  |-  ( ph  ->  ( ( ZZ>= `  m
)  C_  ( ZZ>= `  m )  \/  ( ZZ>=
`  m )  e. 
Fin ) )
91 sumss2 13224 . . . . . . 7  |-  ( ( ( { m }  C_  ( ZZ>= `  m )  /\  A. k  e.  {
m }  ( ( 1  /  3 ) ^ k )  e.  CC )  /\  (
( ZZ>= `  m )  C_  ( ZZ>= `  m )  \/  ( ZZ>= `  m )  e.  Fin ) )  ->  sum_ k  e.  { m }  ( ( 1  /  3 ) ^
k )  =  sum_ k  e.  ( ZZ>= `  m ) if ( k  e.  { m } ,  ( (
1  /  3 ) ^ k ) ,  0 ) )
9282, 87, 90, 91syl21anc 1217 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  {
m }  ( ( 1  /  3 ) ^ k )  = 
sum_ k  e.  (
ZZ>= `  m ) if ( k  e.  {
m } ,  ( ( 1  /  3
) ^ k ) ,  0 ) )
9384sumsn 13238 . . . . . . 7  |-  ( ( m  e.  NN  /\  ( ( 1  / 
3 ) ^ m
)  e.  CC )  ->  sum_ k  e.  {
m }  ( ( 1  /  3 ) ^ k )  =  ( ( 1  / 
3 ) ^ m
) )
947, 42, 93syl2anc 661 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  {
m }  ( ( 1  /  3 ) ^ k )  =  ( ( 1  / 
3 ) ^ m
) )
9579, 92, 943eqtr2d 2481 . . . . 5  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  m ) ( ( F `  {
m } ) `  k )  =  ( ( 1  /  3
) ^ m ) )
963, 4syl 16 . . . . . . 7  |-  ( ph  ->  m  e.  A )
9796snssd 4039 . . . . . 6  |-  ( ph  ->  { m }  C_  A )
988rpnnen2lem7 13524 . . . . . 6  |-  ( ( { m }  C_  A  /\  A  C_  NN  /\  m  e.  NN )  ->  sum_ k  e.  (
ZZ>= `  m ) ( ( F `  {
m } ) `  k )  <_  sum_ k  e.  ( ZZ>= `  m )
( ( F `  A ) `  k
) )
9997, 2, 7, 98syl3anc 1218 . . . . 5  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  m ) ( ( F `  {
m } ) `  k )  <_  sum_ k  e.  ( ZZ>= `  m )
( ( F `  A ) `  k
) )
10095, 99eqbrtrrd 4335 . . . 4  |-  ( ph  ->  ( ( 1  / 
3 ) ^ m
)  <_  sum_ k  e.  ( ZZ>= `  m )
( ( F `  A ) `  k
) )
10110, 16, 18, 73, 100ltletrd 9552 . . 3  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  m ) ( ( F `  B
) `  k )  <  sum_ k  e.  (
ZZ>= `  m ) ( ( F `  A
) `  k )
)
10210, 101gtned 9530 . 2  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  m ) ( ( F `  A
) `  k )  =/=  sum_ k  e.  (
ZZ>= `  m ) ( ( F `  B
) `  k )
)
103 rpnnen2.5 . . . . 5  |-  ( ph  ->  A. n  e.  NN  ( n  <  m  -> 
( n  e.  A  <->  n  e.  B ) ) )
104 rpnnen2.6 . . . . 5  |-  ( ps  <->  sum_ k  e.  NN  (
( F `  A
) `  k )  =  sum_ k  e.  NN  ( ( F `  B ) `  k
) )
1058, 2, 1, 3, 103, 104rpnnen2lem10 13527 . . . 4  |-  ( (
ph  /\  ps )  -> 
sum_ k  e.  (
ZZ>= `  m ) ( ( F `  A
) `  k )  =  sum_ k  e.  (
ZZ>= `  m ) ( ( F `  B
) `  k )
)
106105ex 434 . . 3  |-  ( ph  ->  ( ps  ->  sum_ k  e.  ( ZZ>= `  m )
( ( F `  A ) `  k
)  =  sum_ k  e.  ( ZZ>= `  m )
( ( F `  B ) `  k
) ) )
107106necon3ad 2668 . 2  |-  ( ph  ->  ( sum_ k  e.  (
ZZ>= `  m ) ( ( F `  A
) `  k )  =/=  sum_ k  e.  (
ZZ>= `  m ) ( ( F `  B
) `  k )  ->  -.  ps ) )
108102, 107mpd 15 1  |-  ( ph  ->  -.  ps )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2620   A.wral 2736    \ cdif 3346    C_ wss 3349   ifcif 3812   ~Pcpw 3881   {csn 3898   class class class wbr 4313    e. cmpt 4371   ` cfv 5439  (class class class)co 6112   Fincfn 7331   CCcc 9301   RRcr 9302   0cc0 9303   1c1 9304    + caddc 9306    x. cmul 9308    < clt 9439    <_ cle 9440    - cmin 9616    / cdiv 10014   NNcn 10343   2c2 10392   3c3 10393   NN0cn0 10600   ZZcz 10667   ZZ>=cuz 10882   RR+crp 11012   ^cexp 11886   sum_csu 13184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-inf2 7868  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380  ax-pre-sup 9381
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-int 4150  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-se 4701  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-isom 5448  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-om 6498  df-1st 6598  df-2nd 6599  df-recs 6853  df-rdg 6887  df-1o 6941  df-oadd 6945  df-er 7122  df-pm 7238  df-en 7332  df-dom 7333  df-sdom 7334  df-fin 7335  df-sup 7712  df-oi 7745  df-card 8130  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-div 10015  df-nn 10344  df-2 10401  df-3 10402  df-n0 10601  df-z 10668  df-uz 10883  df-rp 11013  df-ico 11327  df-fz 11459  df-fzo 11570  df-fl 11663  df-seq 11828  df-exp 11887  df-hash 12125  df-cj 12609  df-re 12610  df-im 12611  df-sqr 12745  df-abs 12746  df-limsup 12970  df-clim 12987  df-rlim 12988  df-sum 13185
This theorem is referenced by:  rpnnen2  13529
  Copyright terms: Public domain W3C validator