MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem10 Structured version   Unicode version

Theorem rpnnen2lem10 13506
Description: Lemma for rpnnen2 13508. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypotheses
Ref Expression
rpnnen2.1  |-  F  =  ( x  e.  ~P NN  |->  ( n  e.  NN  |->  if ( n  e.  x ,  ( ( 1  /  3
) ^ n ) ,  0 ) ) )
rpnnen2.2  |-  ( ph  ->  A  C_  NN )
rpnnen2.3  |-  ( ph  ->  B  C_  NN )
rpnnen2.4  |-  ( ph  ->  m  e.  ( A 
\  B ) )
rpnnen2.5  |-  ( ph  ->  A. n  e.  NN  ( n  <  m  -> 
( n  e.  A  <->  n  e.  B ) ) )
rpnnen2.6  |-  ( ps  <->  sum_ k  e.  NN  (
( F `  A
) `  k )  =  sum_ k  e.  NN  ( ( F `  B ) `  k
) )
Assertion
Ref Expression
rpnnen2lem10  |-  ( (
ph  /\  ps )  -> 
sum_ k  e.  (
ZZ>= `  m ) ( ( F `  A
) `  k )  =  sum_ k  e.  (
ZZ>= `  m ) ( ( F `  B
) `  k )
)
Distinct variable groups:    m, n, x, k    A, k, n, x    B, k, n, x   
k, m, F    ph, k
Allowed substitution hints:    ph( x, m, n)    ps( x, k, m, n)    A( m)    B( m)    F( x, n)

Proof of Theorem rpnnen2lem10
StepHypRef Expression
1 simpr 461 . . . 4  |-  ( (
ph  /\  ps )  ->  ps )
2 rpnnen2.6 . . . 4  |-  ( ps  <->  sum_ k  e.  NN  (
( F `  A
) `  k )  =  sum_ k  e.  NN  ( ( F `  B ) `  k
) )
31, 2sylib 196 . . 3  |-  ( (
ph  /\  ps )  -> 
sum_ k  e.  NN  ( ( F `  A ) `  k
)  =  sum_ k  e.  NN  ( ( F `
 B ) `  k ) )
4 rpnnen2.2 . . . . . 6  |-  ( ph  ->  A  C_  NN )
5 rpnnen2.4 . . . . . . 7  |-  ( ph  ->  m  e.  ( A 
\  B ) )
6 eldifi 3478 . . . . . . . 8  |-  ( m  e.  ( A  \  B )  ->  m  e.  A )
7 ssel2 3351 . . . . . . . 8  |-  ( ( A  C_  NN  /\  m  e.  A )  ->  m  e.  NN )
86, 7sylan2 474 . . . . . . 7  |-  ( ( A  C_  NN  /\  m  e.  ( A  \  B
) )  ->  m  e.  NN )
94, 5, 8syl2anc 661 . . . . . 6  |-  ( ph  ->  m  e.  NN )
10 rpnnen2.1 . . . . . . 7  |-  F  =  ( x  e.  ~P NN  |->  ( n  e.  NN  |->  if ( n  e.  x ,  ( ( 1  /  3
) ^ n ) ,  0 ) ) )
1110rpnnen2lem8 13504 . . . . . 6  |-  ( ( A  C_  NN  /\  m  e.  NN )  ->  sum_ k  e.  NN  ( ( F `
 A ) `  k )  =  (
sum_ k  e.  ( 1 ... ( m  -  1 ) ) ( ( F `  A ) `  k
)  +  sum_ k  e.  ( ZZ>= `  m )
( ( F `  A ) `  k
) ) )
124, 9, 11syl2anc 661 . . . . 5  |-  ( ph  -> 
sum_ k  e.  NN  ( ( F `  A ) `  k
)  =  ( sum_ k  e.  ( 1 ... ( m  - 
1 ) ) ( ( F `  A
) `  k )  +  sum_ k  e.  (
ZZ>= `  m ) ( ( F `  A
) `  k )
) )
13 1z 10676 . . . . . . . . . . . . . 14  |-  1  e.  ZZ
14 nnz 10668 . . . . . . . . . . . . . 14  |-  ( m  e.  NN  ->  m  e.  ZZ )
15 elfzm11 11528 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  ZZ  /\  m  e.  ZZ )  ->  ( k  e.  ( 1 ... ( m  -  1 ) )  <-> 
( k  e.  ZZ  /\  1  <_  k  /\  k  <  m ) ) )
1613, 14, 15sylancr 663 . . . . . . . . . . . . 13  |-  ( m  e.  NN  ->  (
k  e.  ( 1 ... ( m  - 
1 ) )  <->  ( k  e.  ZZ  /\  1  <_ 
k  /\  k  <  m ) ) )
1716biimpa 484 . . . . . . . . . . . 12  |-  ( ( m  e.  NN  /\  k  e.  ( 1 ... ( m  - 
1 ) ) )  ->  ( k  e.  ZZ  /\  1  <_ 
k  /\  k  <  m ) )
189, 17sylan 471 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 1 ... (
m  -  1 ) ) )  ->  (
k  e.  ZZ  /\  1  <_  k  /\  k  <  m ) )
1918simp3d 1002 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 1 ... (
m  -  1 ) ) )  ->  k  <  m )
20 rpnnen2.5 . . . . . . . . . . 11  |-  ( ph  ->  A. n  e.  NN  ( n  <  m  -> 
( n  e.  A  <->  n  e.  B ) ) )
21 elfznn 11478 . . . . . . . . . . 11  |-  ( k  e.  ( 1 ... ( m  -  1 ) )  ->  k  e.  NN )
22 breq1 4295 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  (
n  <  m  <->  k  <  m ) )
23 eleq1 2503 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  (
n  e.  A  <->  k  e.  A ) )
24 eleq1 2503 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  (
n  e.  B  <->  k  e.  B ) )
2523, 24bibi12d 321 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  (
( n  e.  A  <->  n  e.  B )  <->  ( k  e.  A  <->  k  e.  B
) ) )
2622, 25imbi12d 320 . . . . . . . . . . . 12  |-  ( n  =  k  ->  (
( n  <  m  ->  ( n  e.  A  <->  n  e.  B ) )  <-> 
( k  <  m  ->  ( k  e.  A  <->  k  e.  B ) ) ) )
2726rspccva 3072 . . . . . . . . . . 11  |-  ( ( A. n  e.  NN  ( n  <  m  -> 
( n  e.  A  <->  n  e.  B ) )  /\  k  e.  NN )  ->  ( k  < 
m  ->  ( k  e.  A  <->  k  e.  B
) ) )
2820, 21, 27syl2an 477 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 1 ... (
m  -  1 ) ) )  ->  (
k  <  m  ->  ( k  e.  A  <->  k  e.  B ) ) )
2919, 28mpd 15 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 1 ... (
m  -  1 ) ) )  ->  (
k  e.  A  <->  k  e.  B ) )
3029ifbid 3811 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 1 ... (
m  -  1 ) ) )  ->  if ( k  e.  A ,  ( ( 1  /  3 ) ^
k ) ,  0 )  =  if ( k  e.  B , 
( ( 1  / 
3 ) ^ k
) ,  0 ) )
3110rpnnen2lem1 13497 . . . . . . . . 9  |-  ( ( A  C_  NN  /\  k  e.  NN )  ->  (
( F `  A
) `  k )  =  if ( k  e.  A ,  ( ( 1  /  3 ) ^ k ) ,  0 ) )
324, 21, 31syl2an 477 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 1 ... (
m  -  1 ) ) )  ->  (
( F `  A
) `  k )  =  if ( k  e.  A ,  ( ( 1  /  3 ) ^ k ) ,  0 ) )
33 rpnnen2.3 . . . . . . . . 9  |-  ( ph  ->  B  C_  NN )
3410rpnnen2lem1 13497 . . . . . . . . 9  |-  ( ( B  C_  NN  /\  k  e.  NN )  ->  (
( F `  B
) `  k )  =  if ( k  e.  B ,  ( ( 1  /  3 ) ^ k ) ,  0 ) )
3533, 21, 34syl2an 477 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 1 ... (
m  -  1 ) ) )  ->  (
( F `  B
) `  k )  =  if ( k  e.  B ,  ( ( 1  /  3 ) ^ k ) ,  0 ) )
3630, 32, 353eqtr4d 2485 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 1 ... (
m  -  1 ) ) )  ->  (
( F `  A
) `  k )  =  ( ( F `
 B ) `  k ) )
3736sumeq2dv 13180 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( 1 ... ( m  -  1 ) ) ( ( F `  A ) `  k
)  =  sum_ k  e.  ( 1 ... (
m  -  1 ) ) ( ( F `
 B ) `  k ) )
3837oveq1d 6106 . . . . 5  |-  ( ph  ->  ( sum_ k  e.  ( 1 ... ( m  -  1 ) ) ( ( F `  A ) `  k
)  +  sum_ k  e.  ( ZZ>= `  m )
( ( F `  A ) `  k
) )  =  (
sum_ k  e.  ( 1 ... ( m  -  1 ) ) ( ( F `  B ) `  k
)  +  sum_ k  e.  ( ZZ>= `  m )
( ( F `  A ) `  k
) ) )
3912, 38eqtrd 2475 . . . 4  |-  ( ph  -> 
sum_ k  e.  NN  ( ( F `  A ) `  k
)  =  ( sum_ k  e.  ( 1 ... ( m  - 
1 ) ) ( ( F `  B
) `  k )  +  sum_ k  e.  (
ZZ>= `  m ) ( ( F `  A
) `  k )
) )
4039adantr 465 . . 3  |-  ( (
ph  /\  ps )  -> 
sum_ k  e.  NN  ( ( F `  A ) `  k
)  =  ( sum_ k  e.  ( 1 ... ( m  - 
1 ) ) ( ( F `  B
) `  k )  +  sum_ k  e.  (
ZZ>= `  m ) ( ( F `  A
) `  k )
) )
4110rpnnen2lem8 13504 . . . . 5  |-  ( ( B  C_  NN  /\  m  e.  NN )  ->  sum_ k  e.  NN  ( ( F `
 B ) `  k )  =  (
sum_ k  e.  ( 1 ... ( m  -  1 ) ) ( ( F `  B ) `  k
)  +  sum_ k  e.  ( ZZ>= `  m )
( ( F `  B ) `  k
) ) )
4233, 9, 41syl2anc 661 . . . 4  |-  ( ph  -> 
sum_ k  e.  NN  ( ( F `  B ) `  k
)  =  ( sum_ k  e.  ( 1 ... ( m  - 
1 ) ) ( ( F `  B
) `  k )  +  sum_ k  e.  (
ZZ>= `  m ) ( ( F `  B
) `  k )
) )
4342adantr 465 . . 3  |-  ( (
ph  /\  ps )  -> 
sum_ k  e.  NN  ( ( F `  B ) `  k
)  =  ( sum_ k  e.  ( 1 ... ( m  - 
1 ) ) ( ( F `  B
) `  k )  +  sum_ k  e.  (
ZZ>= `  m ) ( ( F `  B
) `  k )
) )
443, 40, 433eqtr3d 2483 . 2  |-  ( (
ph  /\  ps )  ->  ( sum_ k  e.  ( 1 ... ( m  -  1 ) ) ( ( F `  B ) `  k
)  +  sum_ k  e.  ( ZZ>= `  m )
( ( F `  A ) `  k
) )  =  (
sum_ k  e.  ( 1 ... ( m  -  1 ) ) ( ( F `  B ) `  k
)  +  sum_ k  e.  ( ZZ>= `  m )
( ( F `  B ) `  k
) ) )
4510rpnnen2lem6 13502 . . . . 5  |-  ( ( A  C_  NN  /\  m  e.  NN )  ->  sum_ k  e.  ( ZZ>= `  m )
( ( F `  A ) `  k
)  e.  RR )
464, 9, 45syl2anc 661 . . . 4  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  m ) ( ( F `  A
) `  k )  e.  RR )
4710rpnnen2lem6 13502 . . . . 5  |-  ( ( B  C_  NN  /\  m  e.  NN )  ->  sum_ k  e.  ( ZZ>= `  m )
( ( F `  B ) `  k
)  e.  RR )
4833, 9, 47syl2anc 661 . . . 4  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  m ) ( ( F `  B
) `  k )  e.  RR )
49 fzfid 11795 . . . . 5  |-  ( ph  ->  ( 1 ... (
m  -  1 ) )  e.  Fin )
5010rpnnen2lem2 13498 . . . . . . 7  |-  ( B 
C_  NN  ->  ( F `
 B ) : NN --> RR )
5133, 50syl 16 . . . . . 6  |-  ( ph  ->  ( F `  B
) : NN --> RR )
52 ffvelrn 5841 . . . . . 6  |-  ( ( ( F `  B
) : NN --> RR  /\  k  e.  NN )  ->  ( ( F `  B ) `  k
)  e.  RR )
5351, 21, 52syl2an 477 . . . . 5  |-  ( (
ph  /\  k  e.  ( 1 ... (
m  -  1 ) ) )  ->  (
( F `  B
) `  k )  e.  RR )
5449, 53fsumrecl 13211 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( 1 ... ( m  -  1 ) ) ( ( F `  B ) `  k
)  e.  RR )
55 readdcan 9543 . . . 4  |-  ( (
sum_ k  e.  (
ZZ>= `  m ) ( ( F `  A
) `  k )  e.  RR  /\  sum_ k  e.  ( ZZ>= `  m )
( ( F `  B ) `  k
)  e.  RR  /\  sum_ k  e.  ( 1 ... ( m  - 
1 ) ) ( ( F `  B
) `  k )  e.  RR )  ->  (
( sum_ k  e.  ( 1 ... ( m  -  1 ) ) ( ( F `  B ) `  k
)  +  sum_ k  e.  ( ZZ>= `  m )
( ( F `  A ) `  k
) )  =  (
sum_ k  e.  ( 1 ... ( m  -  1 ) ) ( ( F `  B ) `  k
)  +  sum_ k  e.  ( ZZ>= `  m )
( ( F `  B ) `  k
) )  <->  sum_ k  e.  ( ZZ>= `  m )
( ( F `  A ) `  k
)  =  sum_ k  e.  ( ZZ>= `  m )
( ( F `  B ) `  k
) ) )
5646, 48, 54, 55syl3anc 1218 . . 3  |-  ( ph  ->  ( ( sum_ k  e.  ( 1 ... (
m  -  1 ) ) ( ( F `
 B ) `  k )  +  sum_ k  e.  ( ZZ>= `  m ) ( ( F `  A ) `
 k ) )  =  ( sum_ k  e.  ( 1 ... (
m  -  1 ) ) ( ( F `
 B ) `  k )  +  sum_ k  e.  ( ZZ>= `  m ) ( ( F `  B ) `
 k ) )  <->  sum_ k  e.  ( ZZ>= `  m ) ( ( F `  A ) `
 k )  = 
sum_ k  e.  (
ZZ>= `  m ) ( ( F `  B
) `  k )
) )
5756adantr 465 . 2  |-  ( (
ph  /\  ps )  ->  ( ( sum_ k  e.  ( 1 ... (
m  -  1 ) ) ( ( F `
 B ) `  k )  +  sum_ k  e.  ( ZZ>= `  m ) ( ( F `  A ) `
 k ) )  =  ( sum_ k  e.  ( 1 ... (
m  -  1 ) ) ( ( F `
 B ) `  k )  +  sum_ k  e.  ( ZZ>= `  m ) ( ( F `  B ) `
 k ) )  <->  sum_ k  e.  ( ZZ>= `  m ) ( ( F `  A ) `
 k )  = 
sum_ k  e.  (
ZZ>= `  m ) ( ( F `  B
) `  k )
) )
5844, 57mpbid 210 1  |-  ( (
ph  /\  ps )  -> 
sum_ k  e.  (
ZZ>= `  m ) ( ( F `  A
) `  k )  =  sum_ k  e.  (
ZZ>= `  m ) ( ( F `  B
) `  k )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2715    \ cdif 3325    C_ wss 3328   ifcif 3791   ~Pcpw 3860   class class class wbr 4292    e. cmpt 4350   -->wf 5414   ` cfv 5418  (class class class)co 6091   RRcr 9281   0cc0 9282   1c1 9283    + caddc 9285    < clt 9418    <_ cle 9419    - cmin 9595    / cdiv 9993   NNcn 10322   3c3 10372   ZZcz 10646   ZZ>=cuz 10861   ...cfz 11437   ^cexp 11865   sum_csu 13163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-inf2 7847  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359  ax-pre-sup 9360
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-se 4680  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-isom 5427  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-1o 6920  df-oadd 6924  df-er 7101  df-pm 7217  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-sup 7691  df-oi 7724  df-card 8109  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-div 9994  df-nn 10323  df-2 10380  df-3 10381  df-n0 10580  df-z 10647  df-uz 10862  df-rp 10992  df-ico 11306  df-fz 11438  df-fzo 11549  df-fl 11642  df-seq 11807  df-exp 11866  df-hash 12104  df-cj 12588  df-re 12589  df-im 12590  df-sqr 12724  df-abs 12725  df-limsup 12949  df-clim 12966  df-rlim 12967  df-sum 13164
This theorem is referenced by:  rpnnen2lem11  13507
  Copyright terms: Public domain W3C validator