MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem1 Unicode version

Theorem rpnnen2lem1 12367
Description: Lemma for rpnnen2 12378. (Contributed by Mario Carneiro, 13-May-2013.)
Hypothesis
Ref Expression
rpnnen2.1  |-  F  =  ( x  e.  ~P NN  |->  ( n  e.  NN  |->  if ( n  e.  x ,  ( ( 1  /  3
) ^ n ) ,  0 ) ) )
Assertion
Ref Expression
rpnnen2lem1  |-  ( ( A  C_  NN  /\  N  e.  NN )  ->  (
( F `  A
) `  N )  =  if ( N  e.  A ,  ( ( 1  /  3 ) ^ N ) ,  0 ) )
Distinct variable groups:    x, n, A    n, N
Allowed substitution hints:    F( x, n)    N( x)

Proof of Theorem rpnnen2lem1
StepHypRef Expression
1 nnex 9632 . . . . 5  |-  NN  e.  _V
21elpw2 4064 . . . 4  |-  ( A  e.  ~P NN  <->  A  C_  NN )
3 eleq2 2314 . . . . . . 7  |-  ( x  =  A  ->  (
n  e.  x  <->  n  e.  A ) )
43ifbid 3488 . . . . . 6  |-  ( x  =  A  ->  if ( n  e.  x ,  ( ( 1  /  3 ) ^
n ) ,  0 )  =  if ( n  e.  A , 
( ( 1  / 
3 ) ^ n
) ,  0 ) )
54mpteq2dv 4004 . . . . 5  |-  ( x  =  A  ->  (
n  e.  NN  |->  if ( n  e.  x ,  ( ( 1  /  3 ) ^
n ) ,  0 ) )  =  ( n  e.  NN  |->  if ( n  e.  A ,  ( ( 1  /  3 ) ^
n ) ,  0 ) ) )
6 rpnnen2.1 . . . . 5  |-  F  =  ( x  e.  ~P NN  |->  ( n  e.  NN  |->  if ( n  e.  x ,  ( ( 1  /  3
) ^ n ) ,  0 ) ) )
71mptex 5598 . . . . 5  |-  ( n  e.  NN  |->  if ( n  e.  A , 
( ( 1  / 
3 ) ^ n
) ,  0 ) )  e.  _V
85, 6, 7fvmpt 5454 . . . 4  |-  ( A  e.  ~P NN  ->  ( F `  A )  =  ( n  e.  NN  |->  if ( n  e.  A ,  ( ( 1  /  3
) ^ n ) ,  0 ) ) )
92, 8sylbir 206 . . 3  |-  ( A 
C_  NN  ->  ( F `
 A )  =  ( n  e.  NN  |->  if ( n  e.  A ,  ( ( 1  /  3 ) ^
n ) ,  0 ) ) )
109fveq1d 5379 . 2  |-  ( A 
C_  NN  ->  ( ( F `  A ) `
 N )  =  ( ( n  e.  NN  |->  if ( n  e.  A ,  ( ( 1  /  3
) ^ n ) ,  0 ) ) `
 N ) )
11 eleq1 2313 . . . 4  |-  ( n  =  N  ->  (
n  e.  A  <->  N  e.  A ) )
12 oveq2 5718 . . . 4  |-  ( n  =  N  ->  (
( 1  /  3
) ^ n )  =  ( ( 1  /  3 ) ^ N ) )
13 eqidd 2254 . . . 4  |-  ( n  =  N  ->  0  =  0 )
1411, 12, 13ifbieq12d 3492 . . 3  |-  ( n  =  N  ->  if ( n  e.  A ,  ( ( 1  /  3 ) ^
n ) ,  0 )  =  if ( N  e.  A , 
( ( 1  / 
3 ) ^ N
) ,  0 ) )
15 eqid 2253 . . 3  |-  ( n  e.  NN  |->  if ( n  e.  A , 
( ( 1  / 
3 ) ^ n
) ,  0 ) )  =  ( n  e.  NN  |->  if ( n  e.  A , 
( ( 1  / 
3 ) ^ n
) ,  0 ) )
16 ovex 5735 . . . 4  |-  ( ( 1  /  3 ) ^ N )  e. 
_V
17 c0ex 8712 . . . 4  |-  0  e.  _V
1816, 17ifex 3528 . . 3  |-  if ( N  e.  A , 
( ( 1  / 
3 ) ^ N
) ,  0 )  e.  _V
1914, 15, 18fvmpt 5454 . 2  |-  ( N  e.  NN  ->  (
( n  e.  NN  |->  if ( n  e.  A ,  ( ( 1  /  3 ) ^
n ) ,  0 ) ) `  N
)  =  if ( N  e.  A , 
( ( 1  / 
3 ) ^ N
) ,  0 ) )
2010, 19sylan9eq 2305 1  |-  ( ( A  C_  NN  /\  N  e.  NN )  ->  (
( F `  A
) `  N )  =  if ( N  e.  A ,  ( ( 1  /  3 ) ^ N ) ,  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621    C_ wss 3078   ifcif 3470   ~Pcpw 3530    e. cmpt 3974   ` cfv 4592  (class class class)co 5710   0cc0 8617   1c1 8618    / cdiv 9303   NNcn 9626   3c3 9676   ^cexp 10982
This theorem is referenced by:  rpnnen2lem3  12369  rpnnen2lem4  12370  rpnnen2lem9  12375  rpnnen2lem10  12376  rpnnen2lem11  12377
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-i2m1 8685  ax-1ne0 8686  ax-rrecex 8689  ax-cnre 8690
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-recs 6274  df-rdg 6309  df-n 9627
  Copyright terms: Public domain W3C validator