MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2 Unicode version

Theorem rpnnen2 12780
Description: The other half of rpnnen 12781, where we show an injection from sets of natural numbers to real numbers. The obvious choice for this is binary expansion, but it has the unfortunate property that it does not produce an injection on numbers which end with all 0's or all 1's (the more well-known decimal version of this is 0.999... 12613). Instead, we opt for a ternary expansion, which produces (a scaled version of) the Cantor set. Since the Cantor set is riddled with gaps, we can show that any two sequences that are not equal must differ somewhere, and when they do, they are placed a finite distance apart, thus ensuring that the map is injective.

Our map assigns to each subset  A of the natural numbers the number  sum_ k  e.  A ( 3 ^
-u k )  = 
sum_ k  e.  NN ( ( F `  A ) `  k
), where  ( ( F `  A ) `  k )  =  if ( k  e.  A ,  ( 3 ^
-u k ) ,  0 ) ) (rpnnen2lem1 12769). This is an infinite sum of real numbers (rpnnen2lem2 12770), and since  A 
C_  B implies  ( F `  A )  <_  ( F `  B ) (rpnnen2lem4 12772) and  ( F `  NN ) converges to  1  /  2 (rpnnen2lem3 12771) by geoisum1 12611, the sum is convergent to some real (rpnnen2lem5 12773 and rpnnen2lem6 12774) by the comparison test for convergence cvgcmp 12550. The comparison test also tells us that  A  C_  B implies  sum_ ( F `  A )  <_ 
sum_ ( F `  B ) (rpnnen2lem7 12775).

Putting it all together, if we have two sets  x  =/=  y, there must differ somewhere, and so there must be an  m such that  A. n  < 
m ( n  e.  x  <->  n  e.  y
) but  m  e.  ( x  \  y ) or vice versa. In this case, we split off the first  m  -  1 terms (rpnnen2lem8 12776) and cancel them (rpnnen2lem10 12778), since these are the same for both sets. For the remaining terms, we use the subset property to establish that  sum_ ( F `
 y )  <_  sum_ ( F `  ( NN  \  { m }
) ) and  sum_ ( F `
 { m }
)  <_  sum_ ( F `
 x ) (where these sums are only over  ( ZZ>= `  m
)), and since  sum_ ( F `
 ( NN  \  { m } ) )  =  ( 3 ^ -u m )  /  2 (rpnnen2lem9 12777) and  sum_ ( F `  { m } )  =  ( 3 ^
-u m ), we establish that  sum_ ( F `
 y )  <  sum_ ( F `  x
) (rpnnen2lem11 12779) so that they must be different. By contraposition, we find that this map is an injection. (Contributed by Mario Carneiro, 13-May-2013.) (Proof shortened by Mario Carneiro, 30-Apr-2014.)

Hypothesis
Ref Expression
rpnnen2.1  |-  F  =  ( x  e.  ~P NN  |->  ( n  e.  NN  |->  if ( n  e.  x ,  ( ( 1  /  3
) ^ n ) ,  0 ) ) )
Assertion
Ref Expression
rpnnen2  |-  ~P NN  ~<_  ( 0 [,] 1
)
Distinct variable group:    x, n
Allowed substitution hints:    F( x, n)

Proof of Theorem rpnnen2
Dummy variables  m  y  z  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 6065 . 2  |-  ( 0 [,] 1 )  e. 
_V
2 elpwi 3767 . . . . 5  |-  ( y  e.  ~P NN  ->  y 
C_  NN )
3 nnuz 10477 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
43sumeq1i 12447 . . . . . 6  |-  sum_ k  e.  NN  ( ( F `
 y ) `  k )  =  sum_ k  e.  ( ZZ>= ` 
1 ) ( ( F `  y ) `
 k )
5 1nn 9967 . . . . . . 7  |-  1  e.  NN
6 rpnnen2.1 . . . . . . . 8  |-  F  =  ( x  e.  ~P NN  |->  ( n  e.  NN  |->  if ( n  e.  x ,  ( ( 1  /  3
) ^ n ) ,  0 ) ) )
76rpnnen2lem6 12774 . . . . . . 7  |-  ( ( y  C_  NN  /\  1  e.  NN )  ->  sum_ k  e.  ( ZZ>= `  1 )
( ( F `  y ) `  k
)  e.  RR )
85, 7mpan2 653 . . . . . 6  |-  ( y 
C_  NN  ->  sum_ k  e.  ( ZZ>= `  1 )
( ( F `  y ) `  k
)  e.  RR )
94, 8syl5eqel 2488 . . . . 5  |-  ( y 
C_  NN  ->  sum_ k  e.  NN  ( ( F `
 y ) `  k )  e.  RR )
102, 9syl 16 . . . 4  |-  ( y  e.  ~P NN  ->  sum_ k  e.  NN  (
( F `  y
) `  k )  e.  RR )
11 1z 10267 . . . . . 6  |-  1  e.  ZZ
1211a1i 11 . . . . 5  |-  ( y  e.  ~P NN  ->  1  e.  ZZ )
13 eqidd 2405 . . . . 5  |-  ( ( y  e.  ~P NN  /\  k  e.  NN )  ->  ( ( F `
 y ) `  k )  =  ( ( F `  y
) `  k )
)
146rpnnen2lem2 12770 . . . . . . 7  |-  ( y 
C_  NN  ->  ( F `
 y ) : NN --> RR )
152, 14syl 16 . . . . . 6  |-  ( y  e.  ~P NN  ->  ( F `  y ) : NN --> RR )
1615ffvelrnda 5829 . . . . 5  |-  ( ( y  e.  ~P NN  /\  k  e.  NN )  ->  ( ( F `
 y ) `  k )  e.  RR )
176rpnnen2lem5 12773 . . . . . 6  |-  ( ( y  C_  NN  /\  1  e.  NN )  ->  seq  1 (  +  , 
( F `  y
) )  e.  dom  ~~>  )
182, 5, 17sylancl 644 . . . . 5  |-  ( y  e.  ~P NN  ->  seq  1 (  +  , 
( F `  y
) )  e.  dom  ~~>  )
19 ssid 3327 . . . . . . . 8  |-  NN  C_  NN
206rpnnen2lem4 12772 . . . . . . . 8  |-  ( ( y  C_  NN  /\  NN  C_  NN  /\  k  e.  NN )  ->  (
0  <_  ( ( F `  y ) `  k )  /\  (
( F `  y
) `  k )  <_  ( ( F `  NN ) `  k ) ) )
2119, 20mp3an2 1267 . . . . . . 7  |-  ( ( y  C_  NN  /\  k  e.  NN )  ->  (
0  <_  ( ( F `  y ) `  k )  /\  (
( F `  y
) `  k )  <_  ( ( F `  NN ) `  k ) ) )
2221simpld 446 . . . . . 6  |-  ( ( y  C_  NN  /\  k  e.  NN )  ->  0  <_  ( ( F `  y ) `  k
) )
232, 22sylan 458 . . . . 5  |-  ( ( y  e.  ~P NN  /\  k  e.  NN )  ->  0  <_  (
( F `  y
) `  k )
)
243, 12, 13, 16, 18, 23isumge0 12505 . . . 4  |-  ( y  e.  ~P NN  ->  0  <_  sum_ k  e.  NN  ( ( F `  y ) `  k
) )
25 1re 9046 . . . . . . 7  |-  1  e.  RR
2625rehalfcli 10172 . . . . . 6  |-  ( 1  /  2 )  e.  RR
2726a1i 11 . . . . 5  |-  ( y  e.  ~P NN  ->  ( 1  /  2 )  e.  RR )
2825a1i 11 . . . . 5  |-  ( y  e.  ~P NN  ->  1  e.  RR )
296rpnnen2lem7 12775 . . . . . . . . 9  |-  ( ( y  C_  NN  /\  NN  C_  NN  /\  1  e.  NN )  ->  sum_ k  e.  ( ZZ>= `  1 )
( ( F `  y ) `  k
)  <_  sum_ k  e.  ( ZZ>= `  1 )
( ( F `  NN ) `  k ) )
3019, 5, 29mp3an23 1271 . . . . . . . 8  |-  ( y 
C_  NN  ->  sum_ k  e.  ( ZZ>= `  1 )
( ( F `  y ) `  k
)  <_  sum_ k  e.  ( ZZ>= `  1 )
( ( F `  NN ) `  k ) )
312, 30syl 16 . . . . . . 7  |-  ( y  e.  ~P NN  ->  sum_ k  e.  ( ZZ>= ` 
1 ) ( ( F `  y ) `
 k )  <_  sum_ k  e.  ( ZZ>= ` 
1 ) ( ( F `  NN ) `
 k ) )
32 eqid 2404 . . . . . . . 8  |-  ( ZZ>= ` 
1 )  =  (
ZZ>= `  1 )
33 eqidd 2405 . . . . . . . 8  |-  ( ( y  e.  ~P NN  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( F `  NN ) `  k )  =  ( ( F `
 NN ) `  k ) )
34 elnnuz 10478 . . . . . . . . . 10  |-  ( k  e.  NN  <->  k  e.  ( ZZ>= `  1 )
)
356rpnnen2lem2 12770 . . . . . . . . . . . . 13  |-  ( NN  C_  NN  ->  ( F `  NN ) : NN --> RR )
3619, 35ax-mp 8 . . . . . . . . . . . 12  |-  ( F `
 NN ) : NN --> RR
3736ffvelrni 5828 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
( F `  NN ) `  k )  e.  RR )
3837recnd 9070 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
( F `  NN ) `  k )  e.  CC )
3934, 38sylbir 205 . . . . . . . . 9  |-  ( k  e.  ( ZZ>= `  1
)  ->  ( ( F `  NN ) `  k )  e.  CC )
4039adantl 453 . . . . . . . 8  |-  ( ( y  e.  ~P NN  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( F `  NN ) `  k )  e.  CC )
416rpnnen2lem3 12771 . . . . . . . . 9  |-  seq  1
(  +  ,  ( F `  NN ) )  ~~>  ( 1  / 
2 )
4241a1i 11 . . . . . . . 8  |-  ( y  e.  ~P NN  ->  seq  1 (  +  , 
( F `  NN ) )  ~~>  ( 1  /  2 ) )
4332, 12, 33, 40, 42isumclim 12496 . . . . . . 7  |-  ( y  e.  ~P NN  ->  sum_ k  e.  ( ZZ>= ` 
1 ) ( ( F `  NN ) `
 k )  =  ( 1  /  2
) )
4431, 43breqtrd 4196 . . . . . 6  |-  ( y  e.  ~P NN  ->  sum_ k  e.  ( ZZ>= ` 
1 ) ( ( F `  y ) `
 k )  <_ 
( 1  /  2
) )
454, 44syl5eqbr 4205 . . . . 5  |-  ( y  e.  ~P NN  ->  sum_ k  e.  NN  (
( F `  y
) `  k )  <_  ( 1  /  2
) )
46 halflt1 10145 . . . . . . 7  |-  ( 1  /  2 )  <  1
4726, 25, 46ltleii 9152 . . . . . 6  |-  ( 1  /  2 )  <_ 
1
4847a1i 11 . . . . 5  |-  ( y  e.  ~P NN  ->  ( 1  /  2 )  <_  1 )
4910, 27, 28, 45, 48letrd 9183 . . . 4  |-  ( y  e.  ~P NN  ->  sum_ k  e.  NN  (
( F `  y
) `  k )  <_  1 )
50 0re 9047 . . . . 5  |-  0  e.  RR
5150, 25elicc2i 10932 . . . 4  |-  ( sum_ k  e.  NN  (
( F `  y
) `  k )  e.  ( 0 [,] 1
)  <->  ( sum_ k  e.  NN  ( ( F `
 y ) `  k )  e.  RR  /\  0  <_  sum_ k  e.  NN  ( ( F `
 y ) `  k )  /\  sum_ k  e.  NN  (
( F `  y
) `  k )  <_  1 ) )
5210, 24, 49, 51syl3anbrc 1138 . . 3  |-  ( y  e.  ~P NN  ->  sum_ k  e.  NN  (
( F `  y
) `  k )  e.  ( 0 [,] 1
) )
53 elpwi 3767 . . . . . . . . . . 11  |-  ( z  e.  ~P NN  ->  z 
C_  NN )
54 ssdifss 3438 . . . . . . . . . . . 12  |-  ( y 
C_  NN  ->  ( y 
\  z )  C_  NN )
55 ssdifss 3438 . . . . . . . . . . . 12  |-  ( z 
C_  NN  ->  ( z 
\  y )  C_  NN )
56 unss 3481 . . . . . . . . . . . . 13  |-  ( ( ( y  \  z
)  C_  NN  /\  (
z  \  y )  C_  NN )  <->  ( (
y  \  z )  u.  ( z  \  y
) )  C_  NN )
5756biimpi 187 . . . . . . . . . . . 12  |-  ( ( ( y  \  z
)  C_  NN  /\  (
z  \  y )  C_  NN )  ->  (
( y  \  z
)  u.  ( z 
\  y ) ) 
C_  NN )
5854, 55, 57syl2an 464 . . . . . . . . . . 11  |-  ( ( y  C_  NN  /\  z  C_  NN )  ->  (
( y  \  z
)  u.  ( z 
\  y ) ) 
C_  NN )
592, 53, 58syl2an 464 . . . . . . . . . 10  |-  ( ( y  e.  ~P NN  /\  z  e.  ~P NN )  ->  ( ( y 
\  z )  u.  ( z  \  y
) )  C_  NN )
60 eqss 3323 . . . . . . . . . . . . 13  |-  ( y  =  z  <->  ( y  C_  z  /\  z  C_  y ) )
61 ssdif0 3646 . . . . . . . . . . . . . 14  |-  ( y 
C_  z  <->  ( y  \  z )  =  (/) )
62 ssdif0 3646 . . . . . . . . . . . . . 14  |-  ( z 
C_  y  <->  ( z  \  y )  =  (/) )
6361, 62anbi12i 679 . . . . . . . . . . . . 13  |-  ( ( y  C_  z  /\  z  C_  y )  <->  ( (
y  \  z )  =  (/)  /\  ( z 
\  y )  =  (/) ) )
64 un00 3623 . . . . . . . . . . . . 13  |-  ( ( ( y  \  z
)  =  (/)  /\  (
z  \  y )  =  (/) )  <->  ( (
y  \  z )  u.  ( z  \  y
) )  =  (/) )
6560, 63, 643bitri 263 . . . . . . . . . . . 12  |-  ( y  =  z  <->  ( (
y  \  z )  u.  ( z  \  y
) )  =  (/) )
6665necon3bii 2599 . . . . . . . . . . 11  |-  ( y  =/=  z  <->  ( (
y  \  z )  u.  ( z  \  y
) )  =/=  (/) )
6766biimpi 187 . . . . . . . . . 10  |-  ( y  =/=  z  ->  (
( y  \  z
)  u.  ( z 
\  y ) )  =/=  (/) )
68 nnwo 10498 . . . . . . . . . 10  |-  ( ( ( ( y  \ 
z )  u.  (
z  \  y )
)  C_  NN  /\  (
( y  \  z
)  u.  ( z 
\  y ) )  =/=  (/) )  ->  E. m  e.  ( ( y  \ 
z )  u.  (
z  \  y )
) A. n  e.  ( ( y  \ 
z )  u.  (
z  \  y )
) m  <_  n
)
6959, 67, 68syl2an 464 . . . . . . . . 9  |-  ( ( ( y  e.  ~P NN  /\  z  e.  ~P NN )  /\  y  =/=  z )  ->  E. m  e.  ( ( y  \ 
z )  u.  (
z  \  y )
) A. n  e.  ( ( y  \ 
z )  u.  (
z  \  y )
) m  <_  n
)
7069ex 424 . . . . . . . 8  |-  ( ( y  e.  ~P NN  /\  z  e.  ~P NN )  ->  ( y  =/=  z  ->  E. m  e.  ( ( y  \ 
z )  u.  (
z  \  y )
) A. n  e.  ( ( y  \ 
z )  u.  (
z  \  y )
) m  <_  n
) )
7159sselda 3308 . . . . . . . . . 10  |-  ( ( ( y  e.  ~P NN  /\  z  e.  ~P NN )  /\  m  e.  ( ( y  \ 
z )  u.  (
z  \  y )
) )  ->  m  e.  NN )
72 df-ral 2671 . . . . . . . . . . . 12  |-  ( A. n  e.  ( (
y  \  z )  u.  ( z  \  y
) ) m  <_  n 
<-> 
A. n ( n  e.  ( ( y 
\  z )  u.  ( z  \  y
) )  ->  m  <_  n ) )
73 con34b 284 . . . . . . . . . . . . . 14  |-  ( ( n  e.  ( ( y  \  z )  u.  ( z  \ 
y ) )  ->  m  <_  n )  <->  ( -.  m  <_  n  ->  -.  n  e.  ( (
y  \  z )  u.  ( z  \  y
) ) ) )
74 eldif 3290 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( y  \ 
z )  <->  ( n  e.  y  /\  -.  n  e.  z ) )
75 eldif 3290 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( z  \ 
y )  <->  ( n  e.  z  /\  -.  n  e.  y ) )
7674, 75orbi12i 508 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  ( y 
\  z )  \/  n  e.  ( z 
\  y ) )  <-> 
( ( n  e.  y  /\  -.  n  e.  z )  \/  (
n  e.  z  /\  -.  n  e.  y
) ) )
77 elun 3448 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( ( y 
\  z )  u.  ( z  \  y
) )  <->  ( n  e.  ( y  \  z
)  \/  n  e.  ( z  \  y
) ) )
78 xor 862 . . . . . . . . . . . . . . . . 17  |-  ( -.  ( n  e.  y  <-> 
n  e.  z )  <-> 
( ( n  e.  y  /\  -.  n  e.  z )  \/  (
n  e.  z  /\  -.  n  e.  y
) ) )
7976, 77, 783bitr4ri 270 . . . . . . . . . . . . . . . 16  |-  ( -.  ( n  e.  y  <-> 
n  e.  z )  <-> 
n  e.  ( ( y  \  z )  u.  ( z  \ 
y ) ) )
8079con1bii 322 . . . . . . . . . . . . . . 15  |-  ( -.  n  e.  ( ( y  \  z )  u.  ( z  \ 
y ) )  <->  ( n  e.  y  <->  n  e.  z
) )
8180imbi2i 304 . . . . . . . . . . . . . 14  |-  ( ( -.  m  <_  n  ->  -.  n  e.  ( ( y  \  z
)  u.  ( z 
\  y ) ) )  <->  ( -.  m  <_  n  ->  ( n  e.  y  <->  n  e.  z
) ) )
8273, 81bitri 241 . . . . . . . . . . . . 13  |-  ( ( n  e.  ( ( y  \  z )  u.  ( z  \ 
y ) )  ->  m  <_  n )  <->  ( -.  m  <_  n  ->  (
n  e.  y  <->  n  e.  z ) ) )
8382albii 1572 . . . . . . . . . . . 12  |-  ( A. n ( n  e.  ( ( y  \ 
z )  u.  (
z  \  y )
)  ->  m  <_  n )  <->  A. n ( -.  m  <_  n  ->  ( n  e.  y  <->  n  e.  z ) ) )
8472, 83bitri 241 . . . . . . . . . . 11  |-  ( A. n  e.  ( (
y  \  z )  u.  ( z  \  y
) ) m  <_  n 
<-> 
A. n ( -.  m  <_  n  ->  ( n  e.  y  <->  n  e.  z ) ) )
85 alral 2724 . . . . . . . . . . . 12  |-  ( A. n ( -.  m  <_  n  ->  ( n  e.  y  <->  n  e.  z
) )  ->  A. n  e.  NN  ( -.  m  <_  n  ->  ( n  e.  y  <->  n  e.  z
) ) )
86 nnre 9963 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  n  e.  RR )
87 nnre 9963 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN  ->  m  e.  RR )
88 ltnle 9111 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  RR  /\  m  e.  RR )  ->  ( n  <  m  <->  -.  m  <_  n )
)
8986, 87, 88syl2anr 465 . . . . . . . . . . . . . 14  |-  ( ( m  e.  NN  /\  n  e.  NN )  ->  ( n  <  m  <->  -.  m  <_  n )
)
9089imbi1d 309 . . . . . . . . . . . . 13  |-  ( ( m  e.  NN  /\  n  e.  NN )  ->  ( ( n  < 
m  ->  ( n  e.  y  <->  n  e.  z
) )  <->  ( -.  m  <_  n  ->  (
n  e.  y  <->  n  e.  z ) ) ) )
9190ralbidva 2682 . . . . . . . . . . . 12  |-  ( m  e.  NN  ->  ( A. n  e.  NN  ( n  <  m  -> 
( n  e.  y  <-> 
n  e.  z ) )  <->  A. n  e.  NN  ( -.  m  <_  n  ->  ( n  e.  y  <->  n  e.  z
) ) ) )
9285, 91syl5ibr 213 . . . . . . . . . . 11  |-  ( m  e.  NN  ->  ( A. n ( -.  m  <_  n  ->  ( n  e.  y  <->  n  e.  z
) )  ->  A. n  e.  NN  ( n  < 
m  ->  ( n  e.  y  <->  n  e.  z
) ) ) )
9384, 92syl5bi 209 . . . . . . . . . 10  |-  ( m  e.  NN  ->  ( A. n  e.  (
( y  \  z
)  u.  ( z 
\  y ) ) m  <_  n  ->  A. n  e.  NN  (
n  <  m  ->  ( n  e.  y  <->  n  e.  z ) ) ) )
9471, 93syl 16 . . . . . . . . 9  |-  ( ( ( y  e.  ~P NN  /\  z  e.  ~P NN )  /\  m  e.  ( ( y  \ 
z )  u.  (
z  \  y )
) )  ->  ( A. n  e.  (
( y  \  z
)  u.  ( z 
\  y ) ) m  <_  n  ->  A. n  e.  NN  (
n  <  m  ->  ( n  e.  y  <->  n  e.  z ) ) ) )
9594reximdva 2778 . . . . . . . 8  |-  ( ( y  e.  ~P NN  /\  z  e.  ~P NN )  ->  ( E. m  e.  ( ( y  \ 
z )  u.  (
z  \  y )
) A. n  e.  ( ( y  \ 
z )  u.  (
z  \  y )
) m  <_  n  ->  E. m  e.  ( ( y  \  z
)  u.  ( z 
\  y ) ) A. n  e.  NN  ( n  <  m  -> 
( n  e.  y  <-> 
n  e.  z ) ) ) )
9670, 95syld 42 . . . . . . 7  |-  ( ( y  e.  ~P NN  /\  z  e.  ~P NN )  ->  ( y  =/=  z  ->  E. m  e.  ( ( y  \ 
z )  u.  (
z  \  y )
) A. n  e.  NN  ( n  < 
m  ->  ( n  e.  y  <->  n  e.  z
) ) ) )
97 rexun 3487 . . . . . . 7  |-  ( E. m  e.  ( ( y  \  z )  u.  ( z  \ 
y ) ) A. n  e.  NN  (
n  <  m  ->  ( n  e.  y  <->  n  e.  z ) )  <->  ( E. m  e.  ( y  \  z ) A. n  e.  NN  (
n  <  m  ->  ( n  e.  y  <->  n  e.  z ) )  \/ 
E. m  e.  ( z  \  y ) A. n  e.  NN  ( n  <  m  -> 
( n  e.  y  <-> 
n  e.  z ) ) ) )
9896, 97syl6ib 218 . . . . . 6  |-  ( ( y  e.  ~P NN  /\  z  e.  ~P NN )  ->  ( y  =/=  z  ->  ( E. m  e.  ( y  \  z ) A. n  e.  NN  (
n  <  m  ->  ( n  e.  y  <->  n  e.  z ) )  \/ 
E. m  e.  ( z  \  y ) A. n  e.  NN  ( n  <  m  -> 
( n  e.  y  <-> 
n  e.  z ) ) ) ) )
99 simpll 731 . . . . . . . . . 10  |-  ( ( ( y  C_  NN  /\  z  C_  NN )  /\  ( m  e.  ( y  \  z )  /\  A. n  e.  NN  ( n  < 
m  ->  ( n  e.  y  <->  n  e.  z
) ) ) )  ->  y  C_  NN )
100 simplr 732 . . . . . . . . . 10  |-  ( ( ( y  C_  NN  /\  z  C_  NN )  /\  ( m  e.  ( y  \  z )  /\  A. n  e.  NN  ( n  < 
m  ->  ( n  e.  y  <->  n  e.  z
) ) ) )  ->  z  C_  NN )
101 simprl 733 . . . . . . . . . 10  |-  ( ( ( y  C_  NN  /\  z  C_  NN )  /\  ( m  e.  ( y  \  z )  /\  A. n  e.  NN  ( n  < 
m  ->  ( n  e.  y  <->  n  e.  z
) ) ) )  ->  m  e.  ( y  \  z ) )
102 simprr 734 . . . . . . . . . 10  |-  ( ( ( y  C_  NN  /\  z  C_  NN )  /\  ( m  e.  ( y  \  z )  /\  A. n  e.  NN  ( n  < 
m  ->  ( n  e.  y  <->  n  e.  z
) ) ) )  ->  A. n  e.  NN  ( n  <  m  -> 
( n  e.  y  <-> 
n  e.  z ) ) )
103 biid 228 . . . . . . . . . 10  |-  ( sum_ k  e.  NN  (
( F `  y
) `  k )  =  sum_ k  e.  NN  ( ( F `  z ) `  k
)  <->  sum_ k  e.  NN  ( ( F `  y ) `  k
)  =  sum_ k  e.  NN  ( ( F `
 z ) `  k ) )
1046, 99, 100, 101, 102, 103rpnnen2lem11 12779 . . . . . . . . 9  |-  ( ( ( y  C_  NN  /\  z  C_  NN )  /\  ( m  e.  ( y  \  z )  /\  A. n  e.  NN  ( n  < 
m  ->  ( n  e.  y  <->  n  e.  z
) ) ) )  ->  -.  sum_ k  e.  NN  ( ( F `
 y ) `  k )  =  sum_ k  e.  NN  (
( F `  z
) `  k )
)
105104rexlimdvaa 2791 . . . . . . . 8  |-  ( ( y  C_  NN  /\  z  C_  NN )  ->  ( E. m  e.  (
y  \  z ) A. n  e.  NN  ( n  <  m  -> 
( n  e.  y  <-> 
n  e.  z ) )  ->  -.  sum_ k  e.  NN  ( ( F `
 y ) `  k )  =  sum_ k  e.  NN  (
( F `  z
) `  k )
) )
106 simplr 732 . . . . . . . . . 10  |-  ( ( ( y  C_  NN  /\  z  C_  NN )  /\  ( m  e.  ( z  \  y )  /\  A. n  e.  NN  ( n  < 
m  ->  ( n  e.  y  <->  n  e.  z
) ) ) )  ->  z  C_  NN )
107 simpll 731 . . . . . . . . . 10  |-  ( ( ( y  C_  NN  /\  z  C_  NN )  /\  ( m  e.  ( z  \  y )  /\  A. n  e.  NN  ( n  < 
m  ->  ( n  e.  y  <->  n  e.  z
) ) ) )  ->  y  C_  NN )
108 simprl 733 . . . . . . . . . 10  |-  ( ( ( y  C_  NN  /\  z  C_  NN )  /\  ( m  e.  ( z  \  y )  /\  A. n  e.  NN  ( n  < 
m  ->  ( n  e.  y  <->  n  e.  z
) ) ) )  ->  m  e.  ( z  \  y ) )
109 simprr 734 . . . . . . . . . . 11  |-  ( ( ( y  C_  NN  /\  z  C_  NN )  /\  ( m  e.  ( z  \  y )  /\  A. n  e.  NN  ( n  < 
m  ->  ( n  e.  y  <->  n  e.  z
) ) ) )  ->  A. n  e.  NN  ( n  <  m  -> 
( n  e.  y  <-> 
n  e.  z ) ) )
110 bicom 192 . . . . . . . . . . . . 13  |-  ( ( n  e.  z  <->  n  e.  y )  <->  ( n  e.  y  <->  n  e.  z
) )
111110imbi2i 304 . . . . . . . . . . . 12  |-  ( ( n  <  m  -> 
( n  e.  z  <-> 
n  e.  y ) )  <->  ( n  < 
m  ->  ( n  e.  y  <->  n  e.  z
) ) )
112111ralbii 2690 . . . . . . . . . . 11  |-  ( A. n  e.  NN  (
n  <  m  ->  ( n  e.  z  <->  n  e.  y ) )  <->  A. n  e.  NN  ( n  < 
m  ->  ( n  e.  y  <->  n  e.  z
) ) )
113109, 112sylibr 204 . . . . . . . . . 10  |-  ( ( ( y  C_  NN  /\  z  C_  NN )  /\  ( m  e.  ( z  \  y )  /\  A. n  e.  NN  ( n  < 
m  ->  ( n  e.  y  <->  n  e.  z
) ) ) )  ->  A. n  e.  NN  ( n  <  m  -> 
( n  e.  z  <-> 
n  e.  y ) ) )
114 eqcom 2406 . . . . . . . . . 10  |-  ( sum_ k  e.  NN  (
( F `  y
) `  k )  =  sum_ k  e.  NN  ( ( F `  z ) `  k
)  <->  sum_ k  e.  NN  ( ( F `  z ) `  k
)  =  sum_ k  e.  NN  ( ( F `
 y ) `  k ) )
1156, 106, 107, 108, 113, 114rpnnen2lem11 12779 . . . . . . . . 9  |-  ( ( ( y  C_  NN  /\  z  C_  NN )  /\  ( m  e.  ( z  \  y )  /\  A. n  e.  NN  ( n  < 
m  ->  ( n  e.  y  <->  n  e.  z
) ) ) )  ->  -.  sum_ k  e.  NN  ( ( F `
 y ) `  k )  =  sum_ k  e.  NN  (
( F `  z
) `  k )
)
116115rexlimdvaa 2791 . . . . . . . 8  |-  ( ( y  C_  NN  /\  z  C_  NN )  ->  ( E. m  e.  (
z  \  y ) A. n  e.  NN  ( n  <  m  -> 
( n  e.  y  <-> 
n  e.  z ) )  ->  -.  sum_ k  e.  NN  ( ( F `
 y ) `  k )  =  sum_ k  e.  NN  (
( F `  z
) `  k )
) )
117105, 116jaod 370 . . . . . . 7  |-  ( ( y  C_  NN  /\  z  C_  NN )  ->  (
( E. m  e.  ( y  \  z
) A. n  e.  NN  ( n  < 
m  ->  ( n  e.  y  <->  n  e.  z
) )  \/  E. m  e.  ( z  \  y ) A. n  e.  NN  (
n  <  m  ->  ( n  e.  y  <->  n  e.  z ) ) )  ->  -.  sum_ k  e.  NN  ( ( F `
 y ) `  k )  =  sum_ k  e.  NN  (
( F `  z
) `  k )
) )
1182, 53, 117syl2an 464 . . . . . 6  |-  ( ( y  e.  ~P NN  /\  z  e.  ~P NN )  ->  ( ( E. m  e.  ( y 
\  z ) A. n  e.  NN  (
n  <  m  ->  ( n  e.  y  <->  n  e.  z ) )  \/ 
E. m  e.  ( z  \  y ) A. n  e.  NN  ( n  <  m  -> 
( n  e.  y  <-> 
n  e.  z ) ) )  ->  -.  sum_ k  e.  NN  (
( F `  y
) `  k )  =  sum_ k  e.  NN  ( ( F `  z ) `  k
) ) )
11998, 118syld 42 . . . . 5  |-  ( ( y  e.  ~P NN  /\  z  e.  ~P NN )  ->  ( y  =/=  z  ->  -.  sum_ k  e.  NN  ( ( F `
 y ) `  k )  =  sum_ k  e.  NN  (
( F `  z
) `  k )
) )
120119necon4ad 2628 . . . 4  |-  ( ( y  e.  ~P NN  /\  z  e.  ~P NN )  ->  ( sum_ k  e.  NN  ( ( F `
 y ) `  k )  =  sum_ k  e.  NN  (
( F `  z
) `  k )  ->  y  =  z ) )
121 fveq2 5687 . . . . . 6  |-  ( y  =  z  ->  ( F `  y )  =  ( F `  z ) )
122121fveq1d 5689 . . . . 5  |-  ( y  =  z  ->  (
( F `  y
) `  k )  =  ( ( F `
 z ) `  k ) )
123122sumeq2sdv 12453 . . . 4  |-  ( y  =  z  ->  sum_ k  e.  NN  ( ( F `
 y ) `  k )  =  sum_ k  e.  NN  (
( F `  z
) `  k )
)
124120, 123impbid1 195 . . 3  |-  ( ( y  e.  ~P NN  /\  z  e.  ~P NN )  ->  ( sum_ k  e.  NN  ( ( F `
 y ) `  k )  =  sum_ k  e.  NN  (
( F `  z
) `  k )  <->  y  =  z ) )
12552, 124dom2 7109 . 2  |-  ( ( 0 [,] 1 )  e.  _V  ->  ~P NN 
~<_  ( 0 [,] 1
) )
1261, 125ax-mp 8 1  |-  ~P NN  ~<_  ( 0 [,] 1
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359   A.wal 1546    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   E.wrex 2667   _Vcvv 2916    \ cdif 3277    u. cun 3278    C_ wss 3280   (/)c0 3588   ifcif 3699   ~Pcpw 3759   class class class wbr 4172    e. cmpt 4226   dom cdm 4837   -->wf 5409   ` cfv 5413  (class class class)co 6040    ~<_ cdom 7066   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947    + caddc 8949    < clt 9076    <_ cle 9077    / cdiv 9633   NNcn 9956   2c2 10005   3c3 10006   ZZcz 10238   ZZ>=cuz 10444   [,]cicc 10875    seq cseq 11278   ^cexp 11337    ~~> cli 12233   sum_csu 12434
This theorem is referenced by:  rpnnen  12781  opnreen  18815
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-pm 6980  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-oi 7435  df-card 7782  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-rp 10569  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-limsup 12220  df-clim 12237  df-rlim 12238  df-sum 12435
  Copyright terms: Public domain W3C validator