MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen1lem5 Structured version   Unicode version

Theorem rpnnen1lem5 11259
Description: Lemma for rpnnen1 11260. (Contributed by Mario Carneiro, 12-May-2013.)
Hypotheses
Ref Expression
rpnnen1.1  |-  T  =  { n  e.  ZZ  |  ( n  / 
k )  <  x }
rpnnen1.2  |-  F  =  ( x  e.  RR  |->  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  / 
k ) ) )
Assertion
Ref Expression
rpnnen1lem5  |-  ( x  e.  RR  ->  sup ( ran  ( F `  x ) ,  RR ,  <  )  =  x )
Distinct variable groups:    k, F, n, x    T, n
Allowed substitution hints:    T( x, k)

Proof of Theorem rpnnen1lem5
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 rpnnen1.1 . . . 4  |-  T  =  { n  e.  ZZ  |  ( n  / 
k )  <  x }
2 rpnnen1.2 . . . 4  |-  F  =  ( x  e.  RR  |->  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  / 
k ) ) )
31, 2rpnnen1lem3 11257 . . 3  |-  ( x  e.  RR  ->  A. n  e.  ran  ( F `  x ) n  <_  x )
41, 2rpnnen1lem1 11255 . . . . . 6  |-  ( x  e.  RR  ->  ( F `  x )  e.  ( QQ  ^m  NN ) )
5 qex 11241 . . . . . . 7  |-  QQ  e.  _V
6 nnex 10584 . . . . . . 7  |-  NN  e.  _V
75, 6elmap 7487 . . . . . 6  |-  ( ( F `  x )  e.  ( QQ  ^m  NN )  <->  ( F `  x ) : NN --> QQ )
84, 7sylib 198 . . . . 5  |-  ( x  e.  RR  ->  ( F `  x ) : NN --> QQ )
9 frn 5722 . . . . . 6  |-  ( ( F `  x ) : NN --> QQ  ->  ran  ( F `  x
)  C_  QQ )
10 qssre 11239 . . . . . 6  |-  QQ  C_  RR
119, 10syl6ss 3456 . . . . 5  |-  ( ( F `  x ) : NN --> QQ  ->  ran  ( F `  x
)  C_  RR )
128, 11syl 17 . . . 4  |-  ( x  e.  RR  ->  ran  ( F `  x ) 
C_  RR )
13 1nn 10589 . . . . . . . 8  |-  1  e.  NN
1413ne0ii 3747 . . . . . . 7  |-  NN  =/=  (/)
15 fdm 5720 . . . . . . . 8  |-  ( ( F `  x ) : NN --> QQ  ->  dom  ( F `  x
)  =  NN )
1615neeq1d 2682 . . . . . . 7  |-  ( ( F `  x ) : NN --> QQ  ->  ( dom  ( F `  x )  =/=  (/)  <->  NN  =/=  (/) ) )
1714, 16mpbiri 235 . . . . . 6  |-  ( ( F `  x ) : NN --> QQ  ->  dom  ( F `  x
)  =/=  (/) )
18 dm0rn0 5042 . . . . . . 7  |-  ( dom  ( F `  x
)  =  (/)  <->  ran  ( F `
 x )  =  (/) )
1918necon3bii 2673 . . . . . 6  |-  ( dom  ( F `  x
)  =/=  (/)  <->  ran  ( F `
 x )  =/=  (/) )
2017, 19sylib 198 . . . . 5  |-  ( ( F `  x ) : NN --> QQ  ->  ran  ( F `  x
)  =/=  (/) )
218, 20syl 17 . . . 4  |-  ( x  e.  RR  ->  ran  ( F `  x )  =/=  (/) )
22 breq2 4401 . . . . . . 7  |-  ( y  =  x  ->  (
n  <_  y  <->  n  <_  x ) )
2322ralbidv 2845 . . . . . 6  |-  ( y  =  x  ->  ( A. n  e.  ran  ( F `  x ) n  <_  y  <->  A. n  e.  ran  ( F `  x ) n  <_  x ) )
2423rspcev 3162 . . . . 5  |-  ( ( x  e.  RR  /\  A. n  e.  ran  ( F `  x )
n  <_  x )  ->  E. y  e.  RR  A. n  e.  ran  ( F `  x )
n  <_  y )
253, 24mpdan 668 . . . 4  |-  ( x  e.  RR  ->  E. y  e.  RR  A. n  e. 
ran  ( F `  x ) n  <_ 
y )
26 id 23 . . . 4  |-  ( x  e.  RR  ->  x  e.  RR )
27 suprleub 10549 . . . 4  |-  ( ( ( ran  ( F `
 x )  C_  RR  /\  ran  ( F `
 x )  =/=  (/)  /\  E. y  e.  RR  A. n  e. 
ran  ( F `  x ) n  <_ 
y )  /\  x  e.  RR )  ->  ( sup ( ran  ( F `
 x ) ,  RR ,  <  )  <_  x  <->  A. n  e.  ran  ( F `  x ) n  <_  x )
)
2812, 21, 25, 26, 27syl31anc 1235 . . 3  |-  ( x  e.  RR  ->  ( sup ( ran  ( F `
 x ) ,  RR ,  <  )  <_  x  <->  A. n  e.  ran  ( F `  x ) n  <_  x )
)
293, 28mpbird 234 . 2  |-  ( x  e.  RR  ->  sup ( ran  ( F `  x ) ,  RR ,  <  )  <_  x
)
301, 2rpnnen1lem4 11258 . . . . . . . . 9  |-  ( x  e.  RR  ->  sup ( ran  ( F `  x ) ,  RR ,  <  )  e.  RR )
31 resubcl 9921 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  sup ( ran  ( F `
 x ) ,  RR ,  <  )  e.  RR )  ->  (
x  -  sup ( ran  ( F `  x
) ,  RR ,  <  ) )  e.  RR )
3230, 31mpdan 668 . . . . . . . 8  |-  ( x  e.  RR  ->  (
x  -  sup ( ran  ( F `  x
) ,  RR ,  <  ) )  e.  RR )
3332adantr 465 . . . . . . 7  |-  ( ( x  e.  RR  /\  sup ( ran  ( F `
 x ) ,  RR ,  <  )  <  x )  ->  (
x  -  sup ( ran  ( F `  x
) ,  RR ,  <  ) )  e.  RR )
34 posdif 10088 . . . . . . . . . 10  |-  ( ( sup ( ran  ( F `  x ) ,  RR ,  <  )  e.  RR  /\  x  e.  RR )  ->  ( sup ( ran  ( F `
 x ) ,  RR ,  <  )  <  x  <->  0  <  (
x  -  sup ( ran  ( F `  x
) ,  RR ,  <  ) ) ) )
3530, 34mpancom 669 . . . . . . . . 9  |-  ( x  e.  RR  ->  ( sup ( ran  ( F `
 x ) ,  RR ,  <  )  <  x  <->  0  <  (
x  -  sup ( ran  ( F `  x
) ,  RR ,  <  ) ) ) )
3635biimpa 484 . . . . . . . 8  |-  ( ( x  e.  RR  /\  sup ( ran  ( F `
 x ) ,  RR ,  <  )  <  x )  ->  0  <  ( x  -  sup ( ran  ( F `  x ) ,  RR ,  <  ) ) )
3736gt0ne0d 10159 . . . . . . 7  |-  ( ( x  e.  RR  /\  sup ( ran  ( F `
 x ) ,  RR ,  <  )  <  x )  ->  (
x  -  sup ( ran  ( F `  x
) ,  RR ,  <  ) )  =/=  0
)
3833, 37rereccld 10414 . . . . . 6  |-  ( ( x  e.  RR  /\  sup ( ran  ( F `
 x ) ,  RR ,  <  )  <  x )  ->  (
1  /  ( x  -  sup ( ran  ( F `  x
) ,  RR ,  <  ) ) )  e.  RR )
39 arch 10835 . . . . . 6  |-  ( ( 1  /  ( x  -  sup ( ran  ( F `  x
) ,  RR ,  <  ) ) )  e.  RR  ->  E. k  e.  NN  ( 1  / 
( x  -  sup ( ran  ( F `  x ) ,  RR ,  <  ) ) )  <  k )
4038, 39syl 17 . . . . 5  |-  ( ( x  e.  RR  /\  sup ( ran  ( F `
 x ) ,  RR ,  <  )  <  x )  ->  E. k  e.  NN  ( 1  / 
( x  -  sup ( ran  ( F `  x ) ,  RR ,  <  ) ) )  <  k )
4140ex 434 . . . 4  |-  ( x  e.  RR  ->  ( sup ( ran  ( F `
 x ) ,  RR ,  <  )  <  x  ->  E. k  e.  NN  ( 1  / 
( x  -  sup ( ran  ( F `  x ) ,  RR ,  <  ) ) )  <  k ) )
421, 2rpnnen1lem2 11256 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  sup ( T ,  RR ,  <  )  e.  ZZ )
4342zred 11010 . . . . . . . 8  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  sup ( T ,  RR ,  <  )  e.  RR )
44433adant3 1019 . . . . . . 7  |-  ( ( x  e.  RR  /\  k  e.  NN  /\  (
1  /  ( x  -  sup ( ran  ( F `  x
) ,  RR ,  <  ) ) )  < 
k )  ->  sup ( T ,  RR ,  <  )  e.  RR )
4544ltp1d 10518 . . . . . 6  |-  ( ( x  e.  RR  /\  k  e.  NN  /\  (
1  /  ( x  -  sup ( ran  ( F `  x
) ,  RR ,  <  ) ) )  < 
k )  ->  sup ( T ,  RR ,  <  )  <  ( sup ( T ,  RR ,  <  )  +  1 ) )
4633, 36jca 532 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  sup ( ran  ( F `
 x ) ,  RR ,  <  )  <  x )  ->  (
( x  -  sup ( ran  ( F `  x ) ,  RR ,  <  ) )  e.  RR  /\  0  < 
( x  -  sup ( ran  ( F `  x ) ,  RR ,  <  ) ) ) )
47 nnre 10585 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  k  e.  RR )
48 nngt0 10607 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  0  <  k )
4947, 48jca 532 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
k  e.  RR  /\  0  <  k ) )
50 ltrec1 10474 . . . . . . . . . . . . 13  |-  ( ( ( ( x  -  sup ( ran  ( F `
 x ) ,  RR ,  <  )
)  e.  RR  /\  0  <  ( x  -  sup ( ran  ( F `
 x ) ,  RR ,  <  )
) )  /\  (
k  e.  RR  /\  0  <  k ) )  ->  ( ( 1  /  ( x  -  sup ( ran  ( F `
 x ) ,  RR ,  <  )
) )  <  k  <->  ( 1  /  k )  <  ( x  -  sup ( ran  ( F `
 x ) ,  RR ,  <  )
) ) )
5146, 49, 50syl2an 477 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR  /\ 
sup ( ran  ( F `  x ) ,  RR ,  <  )  <  x )  /\  k  e.  NN )  ->  (
( 1  /  (
x  -  sup ( ran  ( F `  x
) ,  RR ,  <  ) ) )  < 
k  <->  ( 1  / 
k )  <  (
x  -  sup ( ran  ( F `  x
) ,  RR ,  <  ) ) ) )
5230ad2antrr 726 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR  /\ 
sup ( ran  ( F `  x ) ,  RR ,  <  )  <  x )  /\  k  e.  NN )  ->  sup ( ran  ( F `  x ) ,  RR ,  <  )  e.  RR )
53 nnrecre 10615 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  (
1  /  k )  e.  RR )
5453adantl 466 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR  /\ 
sup ( ran  ( F `  x ) ,  RR ,  <  )  <  x )  /\  k  e.  NN )  ->  (
1  /  k )  e.  RR )
55 simpll 754 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR  /\ 
sup ( ran  ( F `  x ) ,  RR ,  <  )  <  x )  /\  k  e.  NN )  ->  x  e.  RR )
5652, 54, 55ltaddsub2d 10195 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR  /\ 
sup ( ran  ( F `  x ) ,  RR ,  <  )  <  x )  /\  k  e.  NN )  ->  (
( sup ( ran  ( F `  x
) ,  RR ,  <  )  +  ( 1  /  k ) )  <  x  <->  ( 1  /  k )  < 
( x  -  sup ( ran  ( F `  x ) ,  RR ,  <  ) ) ) )
5712adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ran  ( F `  x )  C_  RR )
58 ffn 5716 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F `  x ) : NN --> QQ  ->  ( F `  x )  Fn  NN )
598, 58syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  RR  ->  ( F `  x )  Fn  NN )
60 fnfvelrn 6008 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F `  x
)  Fn  NN  /\  k  e.  NN )  ->  ( ( F `  x ) `  k
)  e.  ran  ( F `  x )
)
6159, 60sylan 471 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( ( F `  x ) `  k
)  e.  ran  ( F `  x )
)
6257, 61sseldd 3445 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( ( F `  x ) `  k
)  e.  RR )
6330adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  sup ( ran  ( F `  x ) ,  RR ,  <  )  e.  RR )
6453adantl 466 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( 1  /  k
)  e.  RR )
6512, 21, 253jca 1179 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  RR  ->  ( ran  ( F `  x
)  C_  RR  /\  ran  ( F `  x )  =/=  (/)  /\  E. y  e.  RR  A. n  e. 
ran  ( F `  x ) n  <_ 
y ) )
6665adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( ran  ( F `
 x )  C_  RR  /\  ran  ( F `
 x )  =/=  (/)  /\  E. y  e.  RR  A. n  e. 
ran  ( F `  x ) n  <_ 
y ) )
67 suprub 10546 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ran  ( F `
 x )  C_  RR  /\  ran  ( F `
 x )  =/=  (/)  /\  E. y  e.  RR  A. n  e. 
ran  ( F `  x ) n  <_ 
y )  /\  (
( F `  x
) `  k )  e.  ran  ( F `  x ) )  -> 
( ( F `  x ) `  k
)  <_  sup ( ran  ( F `  x
) ,  RR ,  <  ) )
6866, 61, 67syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( ( F `  x ) `  k
)  <_  sup ( ran  ( F `  x
) ,  RR ,  <  ) )
6962, 63, 64, 68leadd1dd 10208 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( ( ( F `
 x ) `  k )  +  ( 1  /  k ) )  <_  ( sup ( ran  ( F `  x ) ,  RR ,  <  )  +  ( 1  /  k ) ) )
7062, 64readdcld 9655 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( ( ( F `
 x ) `  k )  +  ( 1  /  k ) )  e.  RR )
71 readdcl 9607 . . . . . . . . . . . . . . . . 17  |-  ( ( sup ( ran  ( F `  x ) ,  RR ,  <  )  e.  RR  /\  ( 1  /  k )  e.  RR )  ->  ( sup ( ran  ( F `
 x ) ,  RR ,  <  )  +  ( 1  / 
k ) )  e.  RR )
7230, 53, 71syl2an 477 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( sup ( ran  ( F `  x
) ,  RR ,  <  )  +  ( 1  /  k ) )  e.  RR )
73 simpl 457 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  x  e.  RR )
74 lelttr 9708 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( F `
 x ) `  k )  +  ( 1  /  k ) )  e.  RR  /\  ( sup ( ran  ( F `  x ) ,  RR ,  <  )  +  ( 1  / 
k ) )  e.  RR  /\  x  e.  RR )  ->  (
( ( ( ( F `  x ) `
 k )  +  ( 1  /  k
) )  <_  ( sup ( ran  ( F `
 x ) ,  RR ,  <  )  +  ( 1  / 
k ) )  /\  ( sup ( ran  ( F `  x ) ,  RR ,  <  )  +  ( 1  / 
k ) )  < 
x )  ->  (
( ( F `  x ) `  k
)  +  ( 1  /  k ) )  <  x ) )
7574expd 436 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( F `
 x ) `  k )  +  ( 1  /  k ) )  e.  RR  /\  ( sup ( ran  ( F `  x ) ,  RR ,  <  )  +  ( 1  / 
k ) )  e.  RR  /\  x  e.  RR )  ->  (
( ( ( F `
 x ) `  k )  +  ( 1  /  k ) )  <_  ( sup ( ran  ( F `  x ) ,  RR ,  <  )  +  ( 1  /  k ) )  ->  ( ( sup ( ran  ( F `
 x ) ,  RR ,  <  )  +  ( 1  / 
k ) )  < 
x  ->  ( (
( F `  x
) `  k )  +  ( 1  / 
k ) )  < 
x ) ) )
7670, 72, 73, 75syl3anc 1232 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( ( ( ( F `  x ) `
 k )  +  ( 1  /  k
) )  <_  ( sup ( ran  ( F `
 x ) ,  RR ,  <  )  +  ( 1  / 
k ) )  -> 
( ( sup ( ran  ( F `  x
) ,  RR ,  <  )  +  ( 1  /  k ) )  <  x  ->  (
( ( F `  x ) `  k
)  +  ( 1  /  k ) )  <  x ) ) )
7769, 76mpd 15 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( ( sup ( ran  ( F `  x
) ,  RR ,  <  )  +  ( 1  /  k ) )  <  x  ->  (
( ( F `  x ) `  k
)  +  ( 1  /  k ) )  <  x ) )
7877adantlr 715 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR  /\ 
sup ( ran  ( F `  x ) ,  RR ,  <  )  <  x )  /\  k  e.  NN )  ->  (
( sup ( ran  ( F `  x
) ,  RR ,  <  )  +  ( 1  /  k ) )  <  x  ->  (
( ( F `  x ) `  k
)  +  ( 1  /  k ) )  <  x ) )
7956, 78sylbird 237 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR  /\ 
sup ( ran  ( F `  x ) ,  RR ,  <  )  <  x )  /\  k  e.  NN )  ->  (
( 1  /  k
)  <  ( x  -  sup ( ran  ( F `  x ) ,  RR ,  <  )
)  ->  ( (
( F `  x
) `  k )  +  ( 1  / 
k ) )  < 
x ) )
8051, 79sylbid 217 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR  /\ 
sup ( ran  ( F `  x ) ,  RR ,  <  )  <  x )  /\  k  e.  NN )  ->  (
( 1  /  (
x  -  sup ( ran  ( F `  x
) ,  RR ,  <  ) ) )  < 
k  ->  ( (
( F `  x
) `  k )  +  ( 1  / 
k ) )  < 
x ) )
8142peano2zd 11013 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( sup ( T ,  RR ,  <  )  +  1 )  e.  ZZ )
82 oveq1 6287 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  ( sup ( T ,  RR ,  <  )  +  1 )  ->  ( n  / 
k )  =  ( ( sup ( T ,  RR ,  <  )  +  1 )  / 
k ) )
8382breq1d 4407 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  ( sup ( T ,  RR ,  <  )  +  1 )  ->  ( ( n  /  k )  < 
x  <->  ( ( sup ( T ,  RR ,  <  )  +  1 )  /  k )  <  x ) )
8483, 1elrab2 3211 . . . . . . . . . . . . . . . . 17  |-  ( ( sup ( T ,  RR ,  <  )  +  1 )  e.  T  <->  ( ( sup ( T ,  RR ,  <  )  +  1 )  e.  ZZ  /\  ( ( sup ( T ,  RR ,  <  )  +  1 )  /  k
)  <  x )
)
8584biimpri 208 . . . . . . . . . . . . . . . 16  |-  ( ( ( sup ( T ,  RR ,  <  )  +  1 )  e.  ZZ  /\  ( ( sup ( T ,  RR ,  <  )  +  1 )  /  k
)  <  x )  ->  ( sup ( T ,  RR ,  <  )  +  1 )  e.  T )
8681, 85sylan 471 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  ( ( sup ( T ,  RR ,  <  )  +  1 )  /  k )  <  x )  -> 
( sup ( T ,  RR ,  <  )  +  1 )  e.  T )
87 ssrab2 3526 . . . . . . . . . . . . . . . . . . . 20  |-  { n  e.  ZZ  |  ( n  /  k )  < 
x }  C_  ZZ
881, 87eqsstri 3474 . . . . . . . . . . . . . . . . . . 19  |-  T  C_  ZZ
89 zssre 10914 . . . . . . . . . . . . . . . . . . 19  |-  ZZ  C_  RR
9088, 89sstri 3453 . . . . . . . . . . . . . . . . . 18  |-  T  C_  RR
9190a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  T  C_  RR )
92 remulcl 9609 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( k  e.  RR  /\  x  e.  RR )  ->  ( k  x.  x
)  e.  RR )
9392ancoms 453 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  e.  RR  /\  k  e.  RR )  ->  ( k  x.  x
)  e.  RR )
9447, 93sylan2 474 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( k  x.  x
)  e.  RR )
95 btwnz 11007 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( k  x.  x )  e.  RR  ->  ( E. n  e.  ZZ  n  <  ( k  x.  x )  /\  E. n  e.  ZZ  (
k  x.  x )  <  n ) )
9695simpld 459 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( k  x.  x )  e.  RR  ->  E. n  e.  ZZ  n  <  (
k  x.  x ) )
9794, 96syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  E. n  e.  ZZ  n  <  ( k  x.  x ) )
98 zre 10911 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( n  e.  ZZ  ->  n  e.  RR )
9998adantl 466 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  n  e.  RR )
100 simpll 754 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  x  e.  RR )
10149ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  ( k  e.  RR  /\  0  < 
k ) )
102 ltdivmul 10460 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( n  e.  RR  /\  x  e.  RR  /\  (
k  e.  RR  /\  0  <  k ) )  ->  ( ( n  /  k )  < 
x  <->  n  <  ( k  x.  x ) ) )
10399, 100, 101, 102syl3anc 1232 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  ( ( n  /  k )  < 
x  <->  n  <  ( k  x.  x ) ) )
104103rexbidva 2917 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( E. n  e.  ZZ  ( n  / 
k )  <  x  <->  E. n  e.  ZZ  n  <  ( k  x.  x
) ) )
10597, 104mpbird 234 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  E. n  e.  ZZ  ( n  /  k
)  <  x )
106 rabn0 3761 . . . . . . . . . . . . . . . . . . 19  |-  ( { n  e.  ZZ  | 
( n  /  k
)  <  x }  =/=  (/)  <->  E. n  e.  ZZ  ( n  /  k
)  <  x )
107105, 106sylibr 214 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  { n  e.  ZZ  |  ( n  / 
k )  <  x }  =/=  (/) )
1081neeq1i 2690 . . . . . . . . . . . . . . . . . 18  |-  ( T  =/=  (/)  <->  { n  e.  ZZ  |  ( n  / 
k )  <  x }  =/=  (/) )
109107, 108sylibr 214 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  T  =/=  (/) )
1101rabeq2i 3058 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  e.  T  <->  ( n  e.  ZZ  /\  ( n  /  k )  < 
x ) )
11147ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  k  e.  RR )
112111, 100, 92syl2anc 661 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  ( k  x.  x )  e.  RR )
113 ltle 9706 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( n  e.  RR  /\  ( k  x.  x
)  e.  RR )  ->  ( n  < 
( k  x.  x
)  ->  n  <_  ( k  x.  x ) ) )
11499, 112, 113syl2anc 661 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  ( n  < 
( k  x.  x
)  ->  n  <_  ( k  x.  x ) ) )
115103, 114sylbid 217 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  ( ( n  /  k )  < 
x  ->  n  <_  ( k  x.  x ) ) )
116115impr 619 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  ( n  e.  ZZ  /\  ( n  /  k )  < 
x ) )  ->  n  <_  ( k  x.  x ) )
117110, 116sylan2b 475 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  T
)  ->  n  <_  ( k  x.  x ) )
118117ralrimiva 2820 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  A. n  e.  T  n  <_  ( k  x.  x ) )
119 breq2 4401 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  ( k  x.  x )  ->  (
n  <_  y  <->  n  <_  ( k  x.  x ) ) )
120119ralbidv 2845 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( k  x.  x )  ->  ( A. n  e.  T  n  <_  y  <->  A. n  e.  T  n  <_  ( k  x.  x ) ) )
121120rspcev 3162 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( k  x.  x
)  e.  RR  /\  A. n  e.  T  n  <_  ( k  x.  x ) )  ->  E. y  e.  RR  A. n  e.  T  n  <_  y )
12294, 118, 121syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  E. y  e.  RR  A. n  e.  T  n  <_  y )
12391, 109, 1223jca 1179 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( T  C_  RR  /\  T  =/=  (/)  /\  E. y  e.  RR  A. n  e.  T  n  <_  y ) )
124 suprub 10546 . . . . . . . . . . . . . . . 16  |-  ( ( ( T  C_  RR  /\  T  =/=  (/)  /\  E. y  e.  RR  A. n  e.  T  n  <_  y )  /\  ( sup ( T ,  RR ,  <  )  +  1 )  e.  T )  ->  ( sup ( T ,  RR ,  <  )  +  1 )  <_  sup ( T ,  RR ,  <  ) )
125123, 124sylan 471 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  ( sup ( T ,  RR ,  <  )  +  1 )  e.  T )  -> 
( sup ( T ,  RR ,  <  )  +  1 )  <_  sup ( T ,  RR ,  <  ) )
12686, 125syldan 470 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  ( ( sup ( T ,  RR ,  <  )  +  1 )  /  k )  <  x )  -> 
( sup ( T ,  RR ,  <  )  +  1 )  <_  sup ( T ,  RR ,  <  ) )
127126ex 434 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( ( ( sup ( T ,  RR ,  <  )  +  1 )  /  k )  <  x  ->  ( sup ( T ,  RR ,  <  )  +  1 )  <_  sup ( T ,  RR ,  <  ) ) )
12842zcnd 11011 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  sup ( T ,  RR ,  <  )  e.  CC )
129 1cnd 9644 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  1  e.  CC )
130 nncn 10586 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  NN  ->  k  e.  CC )
131 nnne0 10611 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  NN  ->  k  =/=  0 )
132130, 131jca 532 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN  ->  (
k  e.  CC  /\  k  =/=  0 ) )
133132adantl 466 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( k  e.  CC  /\  k  =/=  0 ) )
134 divdir 10273 . . . . . . . . . . . . . . . 16  |-  ( ( sup ( T ,  RR ,  <  )  e.  CC  /\  1  e.  CC  /\  ( k  e.  CC  /\  k  =/=  0 ) )  -> 
( ( sup ( T ,  RR ,  <  )  +  1 )  /  k )  =  ( ( sup ( T ,  RR ,  <  )  /  k )  +  ( 1  / 
k ) ) )
135128, 129, 133, 134syl3anc 1232 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( ( sup ( T ,  RR ,  <  )  +  1 )  /  k )  =  ( ( sup ( T ,  RR ,  <  )  /  k )  +  ( 1  / 
k ) ) )
1366mptex 6126 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  /  k
) )  e.  _V
1372fvmpt2 5943 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  RR  /\  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  / 
k ) )  e. 
_V )  ->  ( F `  x )  =  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  /  k ) ) )
138136, 137mpan2 671 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  RR  ->  ( F `  x )  =  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  /  k ) ) )
139138fveq1d 5853 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  RR  ->  (
( F `  x
) `  k )  =  ( ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  /  k
) ) `  k
) )
140 ovex 6308 . . . . . . . . . . . . . . . . . 18  |-  ( sup ( T ,  RR ,  <  )  /  k
)  e.  _V
141 eqid 2404 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  /  k
) )  =  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  / 
k ) )
142141fvmpt2 5943 . . . . . . . . . . . . . . . . . 18  |-  ( ( k  e.  NN  /\  ( sup ( T ,  RR ,  <  )  / 
k )  e.  _V )  ->  ( ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  /  k
) ) `  k
)  =  ( sup ( T ,  RR ,  <  )  /  k
) )
143140, 142mpan2 671 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN  ->  (
( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  / 
k ) ) `  k )  =  ( sup ( T ,  RR ,  <  )  / 
k ) )
144139, 143sylan9eq 2465 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( ( F `  x ) `  k
)  =  ( sup ( T ,  RR ,  <  )  /  k
) )
145144oveq1d 6295 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( ( ( F `
 x ) `  k )  +  ( 1  /  k ) )  =  ( ( sup ( T ,  RR ,  <  )  / 
k )  +  ( 1  /  k ) ) )
146135, 145eqtr4d 2448 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( ( sup ( T ,  RR ,  <  )  +  1 )  /  k )  =  ( ( ( F `
 x ) `  k )  +  ( 1  /  k ) ) )
147146breq1d 4407 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( ( ( sup ( T ,  RR ,  <  )  +  1 )  /  k )  <  x  <->  ( (
( F `  x
) `  k )  +  ( 1  / 
k ) )  < 
x ) )
14881zred 11010 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( sup ( T ,  RR ,  <  )  +  1 )  e.  RR )
149148, 43lenltd 9765 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( ( sup ( T ,  RR ,  <  )  +  1 )  <_  sup ( T ,  RR ,  <  )  <->  -.  sup ( T ,  RR ,  <  )  <  ( sup ( T ,  RR ,  <  )  +  1 ) ) )
150127, 147, 1493imtr3d 269 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( ( ( ( F `  x ) `
 k )  +  ( 1  /  k
) )  <  x  ->  -.  sup ( T ,  RR ,  <  )  <  ( sup ( T ,  RR ,  <  )  +  1 ) ) )
151150adantlr 715 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR  /\ 
sup ( ran  ( F `  x ) ,  RR ,  <  )  <  x )  /\  k  e.  NN )  ->  (
( ( ( F `
 x ) `  k )  +  ( 1  /  k ) )  <  x  ->  -.  sup ( T ,  RR ,  <  )  < 
( sup ( T ,  RR ,  <  )  +  1 ) ) )
15280, 151syld 44 . . . . . . . . . 10  |-  ( ( ( x  e.  RR  /\ 
sup ( ran  ( F `  x ) ,  RR ,  <  )  <  x )  /\  k  e.  NN )  ->  (
( 1  /  (
x  -  sup ( ran  ( F `  x
) ,  RR ,  <  ) ) )  < 
k  ->  -.  sup ( T ,  RR ,  <  )  <  ( sup ( T ,  RR ,  <  )  +  1 ) ) )
153152exp31 604 . . . . . . . . 9  |-  ( x  e.  RR  ->  ( sup ( ran  ( F `
 x ) ,  RR ,  <  )  <  x  ->  ( k  e.  NN  ->  ( (
1  /  ( x  -  sup ( ran  ( F `  x
) ,  RR ,  <  ) ) )  < 
k  ->  -.  sup ( T ,  RR ,  <  )  <  ( sup ( T ,  RR ,  <  )  +  1 ) ) ) ) )
154153com4l 86 . . . . . . . 8  |-  ( sup ( ran  ( F `
 x ) ,  RR ,  <  )  <  x  ->  ( k  e.  NN  ->  ( (
1  /  ( x  -  sup ( ran  ( F `  x
) ,  RR ,  <  ) ) )  < 
k  ->  ( x  e.  RR  ->  -.  sup ( T ,  RR ,  <  )  <  ( sup ( T ,  RR ,  <  )  +  1 ) ) ) ) )
155154com14 90 . . . . . . 7  |-  ( x  e.  RR  ->  (
k  e.  NN  ->  ( ( 1  /  (
x  -  sup ( ran  ( F `  x
) ,  RR ,  <  ) ) )  < 
k  ->  ( sup ( ran  ( F `  x ) ,  RR ,  <  )  <  x  ->  -.  sup ( T ,  RR ,  <  )  <  ( sup ( T ,  RR ,  <  )  +  1 ) ) ) ) )
1561553imp 1193 . . . . . 6  |-  ( ( x  e.  RR  /\  k  e.  NN  /\  (
1  /  ( x  -  sup ( ran  ( F `  x
) ,  RR ,  <  ) ) )  < 
k )  ->  ( sup ( ran  ( F `
 x ) ,  RR ,  <  )  <  x  ->  -.  sup ( T ,  RR ,  <  )  <  ( sup ( T ,  RR ,  <  )  +  1 ) ) )
15745, 156mt2d 119 . . . . 5  |-  ( ( x  e.  RR  /\  k  e.  NN  /\  (
1  /  ( x  -  sup ( ran  ( F `  x
) ,  RR ,  <  ) ) )  < 
k )  ->  -.  sup ( ran  ( F `
 x ) ,  RR ,  <  )  <  x )
158157rexlimdv3a 2900 . . . 4  |-  ( x  e.  RR  ->  ( E. k  e.  NN  ( 1  /  (
x  -  sup ( ran  ( F `  x
) ,  RR ,  <  ) ) )  < 
k  ->  -.  sup ( ran  ( F `  x
) ,  RR ,  <  )  <  x ) )
15941, 158syld 44 . . 3  |-  ( x  e.  RR  ->  ( sup ( ran  ( F `
 x ) ,  RR ,  <  )  <  x  ->  -.  sup ( ran  ( F `  x
) ,  RR ,  <  )  <  x ) )
160159pm2.01d 171 . 2  |-  ( x  e.  RR  ->  -.  sup ( ran  ( F `
 x ) ,  RR ,  <  )  <  x )
161 eqlelt 9705 . . 3  |-  ( ( sup ( ran  ( F `  x ) ,  RR ,  <  )  e.  RR  /\  x  e.  RR )  ->  ( sup ( ran  ( F `
 x ) ,  RR ,  <  )  =  x  <->  ( sup ( ran  ( F `  x
) ,  RR ,  <  )  <_  x  /\  -.  sup ( ran  ( F `  x ) ,  RR ,  <  )  <  x ) ) )
16230, 161mpancom 669 . 2  |-  ( x  e.  RR  ->  ( sup ( ran  ( F `
 x ) ,  RR ,  <  )  =  x  <->  ( sup ( ran  ( F `  x
) ,  RR ,  <  )  <_  x  /\  -.  sup ( ran  ( F `  x ) ,  RR ,  <  )  <  x ) ) )
16329, 160, 162mpbir2and 925 1  |-  ( x  e.  RR  ->  sup ( ran  ( F `  x ) ,  RR ,  <  )  =  x )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 186    /\ wa 369    /\ w3a 976    = wceq 1407    e. wcel 1844    =/= wne 2600   A.wral 2756   E.wrex 2757   {crab 2760   _Vcvv 3061    C_ wss 3416   (/)c0 3740   class class class wbr 4397    |-> cmpt 4455   dom cdm 4825   ran crn 4826    Fn wfn 5566   -->wf 5567   ` cfv 5571  (class class class)co 6280    ^m cmap 7459   supcsup 7936   CCcc 9522   RRcr 9523   0cc0 9524   1c1 9525    + caddc 9527    x. cmul 9529    < clt 9660    <_ cle 9661    - cmin 9843    / cdiv 10249   NNcn 10578   ZZcz 10907   QQcq 11229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-rep 4509  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576  ax-cnex 9580  ax-resscn 9581  ax-1cn 9582  ax-icn 9583  ax-addcl 9584  ax-addrcl 9585  ax-mulcl 9586  ax-mulrcl 9587  ax-mulcom 9588  ax-addass 9589  ax-mulass 9590  ax-distr 9591  ax-i2m1 9592  ax-1ne0 9593  ax-1rid 9594  ax-rnegex 9595  ax-rrecex 9596  ax-cnre 9597  ax-pre-lttri 9598  ax-pre-lttrn 9599  ax-pre-ltadd 9600  ax-pre-mulgt0 9601  ax-pre-sup 9602
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3or 977  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-nel 2603  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-tp 3979  df-op 3981  df-uni 4194  df-iun 4275  df-br 4398  df-opab 4456  df-mpt 4457  df-tr 4492  df-eprel 4736  df-id 4740  df-po 4746  df-so 4747  df-fr 4784  df-we 4786  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-pred 5369  df-ord 5415  df-on 5416  df-lim 5417  df-suc 5418  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-riota 6242  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-om 6686  df-1st 6786  df-2nd 6787  df-wrecs 7015  df-recs 7077  df-rdg 7115  df-er 7350  df-map 7461  df-en 7557  df-dom 7558  df-sdom 7559  df-sup 7937  df-pnf 9662  df-mnf 9663  df-xr 9664  df-ltxr 9665  df-le 9666  df-sub 9845  df-neg 9846  df-div 10250  df-nn 10579  df-n0 10839  df-z 10908  df-q 11230
This theorem is referenced by:  rpnnen1  11260
  Copyright terms: Public domain W3C validator