MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen1lem3 Structured version   Unicode version

Theorem rpnnen1lem3 11235
Description: Lemma for rpnnen1 11238. (Contributed by Mario Carneiro, 12-May-2013.)
Hypotheses
Ref Expression
rpnnen1.1  |-  T  =  { n  e.  ZZ  |  ( n  / 
k )  <  x }
rpnnen1.2  |-  F  =  ( x  e.  RR  |->  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  / 
k ) ) )
Assertion
Ref Expression
rpnnen1lem3  |-  ( x  e.  RR  ->  A. n  e.  ran  ( F `  x ) n  <_  x )
Distinct variable groups:    k, F, n, x    T, n
Allowed substitution hints:    T( x, k)

Proof of Theorem rpnnen1lem3
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nnexALT 10558 . . . . . . . 8  |-  NN  e.  _V
21mptex 6144 . . . . . . 7  |-  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  /  k
) )  e.  _V
3 rpnnen1.2 . . . . . . . 8  |-  F  =  ( x  e.  RR  |->  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  / 
k ) ) )
43fvmpt2 5964 . . . . . . 7  |-  ( ( x  e.  RR  /\  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  / 
k ) )  e. 
_V )  ->  ( F `  x )  =  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  /  k ) ) )
52, 4mpan2 671 . . . . . 6  |-  ( x  e.  RR  ->  ( F `  x )  =  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  /  k ) ) )
65fveq1d 5874 . . . . 5  |-  ( x  e.  RR  ->  (
( F `  x
) `  k )  =  ( ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  /  k
) ) `  k
) )
7 ovex 6324 . . . . . 6  |-  ( sup ( T ,  RR ,  <  )  /  k
)  e.  _V
8 eqid 2457 . . . . . . 7  |-  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  /  k
) )  =  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  / 
k ) )
98fvmpt2 5964 . . . . . 6  |-  ( ( k  e.  NN  /\  ( sup ( T ,  RR ,  <  )  / 
k )  e.  _V )  ->  ( ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  /  k
) ) `  k
)  =  ( sup ( T ,  RR ,  <  )  /  k
) )
107, 9mpan2 671 . . . . 5  |-  ( k  e.  NN  ->  (
( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  / 
k ) ) `  k )  =  ( sup ( T ,  RR ,  <  )  / 
k ) )
116, 10sylan9eq 2518 . . . 4  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( ( F `  x ) `  k
)  =  ( sup ( T ,  RR ,  <  )  /  k
) )
12 rpnnen1.1 . . . . . . . . 9  |-  T  =  { n  e.  ZZ  |  ( n  / 
k )  <  x }
1312rabeq2i 3106 . . . . . . . 8  |-  ( n  e.  T  <->  ( n  e.  ZZ  /\  ( n  /  k )  < 
x ) )
14 zre 10889 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  n  e.  RR )
1514adantl 466 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  n  e.  RR )
16 simpll 753 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  x  e.  RR )
17 nnre 10563 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  k  e.  RR )
18 nngt0 10585 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  0  <  k )
1917, 18jca 532 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
k  e.  RR  /\  0  <  k ) )
2019ad2antlr 726 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  ( k  e.  RR  /\  0  < 
k ) )
21 ltdivmul 10438 . . . . . . . . . . 11  |-  ( ( n  e.  RR  /\  x  e.  RR  /\  (
k  e.  RR  /\  0  <  k ) )  ->  ( ( n  /  k )  < 
x  <->  n  <  ( k  x.  x ) ) )
2215, 16, 20, 21syl3anc 1228 . . . . . . . . . 10  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  ( ( n  /  k )  < 
x  <->  n  <  ( k  x.  x ) ) )
2317ad2antlr 726 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  k  e.  RR )
24 remulcl 9594 . . . . . . . . . . . 12  |-  ( ( k  e.  RR  /\  x  e.  RR )  ->  ( k  x.  x
)  e.  RR )
2523, 16, 24syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  ( k  x.  x )  e.  RR )
26 ltle 9690 . . . . . . . . . . 11  |-  ( ( n  e.  RR  /\  ( k  x.  x
)  e.  RR )  ->  ( n  < 
( k  x.  x
)  ->  n  <_  ( k  x.  x ) ) )
2715, 25, 26syl2anc 661 . . . . . . . . . 10  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  ( n  < 
( k  x.  x
)  ->  n  <_  ( k  x.  x ) ) )
2822, 27sylbid 215 . . . . . . . . 9  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  ( ( n  /  k )  < 
x  ->  n  <_  ( k  x.  x ) ) )
2928impr 619 . . . . . . . 8  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  ( n  e.  ZZ  /\  ( n  /  k )  < 
x ) )  ->  n  <_  ( k  x.  x ) )
3013, 29sylan2b 475 . . . . . . 7  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  T
)  ->  n  <_  ( k  x.  x ) )
3130ralrimiva 2871 . . . . . 6  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  A. n  e.  T  n  <_  ( k  x.  x ) )
32 ssrab2 3581 . . . . . . . . . 10  |-  { n  e.  ZZ  |  ( n  /  k )  < 
x }  C_  ZZ
3312, 32eqsstri 3529 . . . . . . . . 9  |-  T  C_  ZZ
34 zssre 10892 . . . . . . . . 9  |-  ZZ  C_  RR
3533, 34sstri 3508 . . . . . . . 8  |-  T  C_  RR
3635a1i 11 . . . . . . 7  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  T  C_  RR )
3724ancoms 453 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  k  e.  RR )  ->  ( k  x.  x
)  e.  RR )
3817, 37sylan2 474 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( k  x.  x
)  e.  RR )
39 btwnz 10987 . . . . . . . . . . . 12  |-  ( ( k  x.  x )  e.  RR  ->  ( E. n  e.  ZZ  n  <  ( k  x.  x )  /\  E. n  e.  ZZ  (
k  x.  x )  <  n ) )
4039simpld 459 . . . . . . . . . . 11  |-  ( ( k  x.  x )  e.  RR  ->  E. n  e.  ZZ  n  <  (
k  x.  x ) )
4138, 40syl 16 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  E. n  e.  ZZ  n  <  ( k  x.  x ) )
4222rexbidva 2965 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( E. n  e.  ZZ  ( n  / 
k )  <  x  <->  E. n  e.  ZZ  n  <  ( k  x.  x
) ) )
4341, 42mpbird 232 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  E. n  e.  ZZ  ( n  /  k
)  <  x )
44 rabn0 3814 . . . . . . . . 9  |-  ( { n  e.  ZZ  | 
( n  /  k
)  <  x }  =/=  (/)  <->  E. n  e.  ZZ  ( n  /  k
)  <  x )
4543, 44sylibr 212 . . . . . . . 8  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  { n  e.  ZZ  |  ( n  / 
k )  <  x }  =/=  (/) )
4612neeq1i 2742 . . . . . . . 8  |-  ( T  =/=  (/)  <->  { n  e.  ZZ  |  ( n  / 
k )  <  x }  =/=  (/) )
4745, 46sylibr 212 . . . . . . 7  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  T  =/=  (/) )
48 breq2 4460 . . . . . . . . . 10  |-  ( y  =  ( k  x.  x )  ->  (
n  <_  y  <->  n  <_  ( k  x.  x ) ) )
4948ralbidv 2896 . . . . . . . . 9  |-  ( y  =  ( k  x.  x )  ->  ( A. n  e.  T  n  <_  y  <->  A. n  e.  T  n  <_  ( k  x.  x ) ) )
5049rspcev 3210 . . . . . . . 8  |-  ( ( ( k  x.  x
)  e.  RR  /\  A. n  e.  T  n  <_  ( k  x.  x ) )  ->  E. y  e.  RR  A. n  e.  T  n  <_  y )
5138, 31, 50syl2anc 661 . . . . . . 7  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  E. y  e.  RR  A. n  e.  T  n  <_  y )
52 suprleub 10527 . . . . . . 7  |-  ( ( ( T  C_  RR  /\  T  =/=  (/)  /\  E. y  e.  RR  A. n  e.  T  n  <_  y )  /\  ( k  x.  x )  e.  RR )  ->  ( sup ( T ,  RR ,  <  )  <_  (
k  x.  x )  <->  A. n  e.  T  n  <_  ( k  x.  x ) ) )
5336, 47, 51, 38, 52syl31anc 1231 . . . . . 6  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( sup ( T ,  RR ,  <  )  <_  ( k  x.  x )  <->  A. n  e.  T  n  <_  ( k  x.  x ) ) )
5431, 53mpbird 232 . . . . 5  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  sup ( T ,  RR ,  <  )  <_ 
( k  x.  x
) )
5512, 3rpnnen1lem2 11234 . . . . . . 7  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  sup ( T ,  RR ,  <  )  e.  ZZ )
5655zred 10990 . . . . . 6  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  sup ( T ,  RR ,  <  )  e.  RR )
57 simpl 457 . . . . . 6  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  x  e.  RR )
5819adantl 466 . . . . . 6  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( k  e.  RR  /\  0  <  k ) )
59 ledivmul 10439 . . . . . 6  |-  ( ( sup ( T ,  RR ,  <  )  e.  RR  /\  x  e.  RR  /\  ( k  e.  RR  /\  0  <  k ) )  -> 
( ( sup ( T ,  RR ,  <  )  /  k )  <_  x  <->  sup ( T ,  RR ,  <  )  <_  ( k  x.  x ) ) )
6056, 57, 58, 59syl3anc 1228 . . . . 5  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( ( sup ( T ,  RR ,  <  )  /  k )  <_  x  <->  sup ( T ,  RR ,  <  )  <_  ( k  x.  x ) ) )
6154, 60mpbird 232 . . . 4  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( sup ( T ,  RR ,  <  )  /  k )  <_  x )
6211, 61eqbrtrd 4476 . . 3  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( ( F `  x ) `  k
)  <_  x )
6362ralrimiva 2871 . 2  |-  ( x  e.  RR  ->  A. k  e.  NN  ( ( F `
 x ) `  k )  <_  x
)
6412, 3rpnnen1lem1 11233 . . . 4  |-  ( x  e.  RR  ->  ( F `  x )  e.  ( QQ  ^m  NN ) )
65 qexALT 11222 . . . . 5  |-  QQ  e.  _V
6665, 1elmap 7466 . . . 4  |-  ( ( F `  x )  e.  ( QQ  ^m  NN )  <->  ( F `  x ) : NN --> QQ )
6764, 66sylib 196 . . 3  |-  ( x  e.  RR  ->  ( F `  x ) : NN --> QQ )
68 ffn 5737 . . 3  |-  ( ( F `  x ) : NN --> QQ  ->  ( F `  x )  Fn  NN )
69 breq1 4459 . . . 4  |-  ( n  =  ( ( F `
 x ) `  k )  ->  (
n  <_  x  <->  ( ( F `  x ) `  k )  <_  x
) )
7069ralrn 6035 . . 3  |-  ( ( F `  x )  Fn  NN  ->  ( A. n  e.  ran  ( F `  x ) n  <_  x  <->  A. k  e.  NN  ( ( F `
 x ) `  k )  <_  x
) )
7167, 68, 703syl 20 . 2  |-  ( x  e.  RR  ->  ( A. n  e.  ran  ( F `  x ) n  <_  x  <->  A. k  e.  NN  ( ( F `
 x ) `  k )  <_  x
) )
7263, 71mpbird 232 1  |-  ( x  e.  RR  ->  A. n  e.  ran  ( F `  x ) n  <_  x )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819    =/= wne 2652   A.wral 2807   E.wrex 2808   {crab 2811   _Vcvv 3109    C_ wss 3471   (/)c0 3793   class class class wbr 4456    |-> cmpt 4515   ran crn 5009    Fn wfn 5589   -->wf 5590   ` cfv 5594  (class class class)co 6296    ^m cmap 7438   supcsup 7918   RRcr 9508   0cc0 9509    x. cmul 9514    < clt 9645    <_ cle 9646    / cdiv 10227   NNcn 10556   ZZcz 10885   QQcq 11207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-er 7329  df-map 7440  df-en 7536  df-dom 7537  df-sdom 7538  df-sup 7919  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-n0 10817  df-z 10886  df-q 11208
This theorem is referenced by:  rpnnen1lem4  11236  rpnnen1lem5  11237
  Copyright terms: Public domain W3C validator