MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen1lem3 Structured version   Unicode version

Theorem rpnnen1lem3 11222
Description: Lemma for rpnnen1 11225. (Contributed by Mario Carneiro, 12-May-2013.)
Hypotheses
Ref Expression
rpnnen1.1  |-  T  =  { n  e.  ZZ  |  ( n  / 
k )  <  x }
rpnnen1.2  |-  F  =  ( x  e.  RR  |->  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  / 
k ) ) )
Assertion
Ref Expression
rpnnen1lem3  |-  ( x  e.  RR  ->  A. n  e.  ran  ( F `  x ) n  <_  x )
Distinct variable groups:    k, F, n, x    T, n
Allowed substitution hints:    T( x, k)

Proof of Theorem rpnnen1lem3
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nnexALT 10550 . . . . . . . 8  |-  NN  e.  _V
21mptex 6142 . . . . . . 7  |-  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  /  k
) )  e.  _V
3 rpnnen1.2 . . . . . . . 8  |-  F  =  ( x  e.  RR  |->  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  / 
k ) ) )
43fvmpt2 5964 . . . . . . 7  |-  ( ( x  e.  RR  /\  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  / 
k ) )  e. 
_V )  ->  ( F `  x )  =  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  /  k ) ) )
52, 4mpan2 671 . . . . . 6  |-  ( x  e.  RR  ->  ( F `  x )  =  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  /  k ) ) )
65fveq1d 5874 . . . . 5  |-  ( x  e.  RR  ->  (
( F `  x
) `  k )  =  ( ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  /  k
) ) `  k
) )
7 ovex 6320 . . . . . 6  |-  ( sup ( T ,  RR ,  <  )  /  k
)  e.  _V
8 eqid 2467 . . . . . . 7  |-  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  /  k
) )  =  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  / 
k ) )
98fvmpt2 5964 . . . . . 6  |-  ( ( k  e.  NN  /\  ( sup ( T ,  RR ,  <  )  / 
k )  e.  _V )  ->  ( ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  /  k
) ) `  k
)  =  ( sup ( T ,  RR ,  <  )  /  k
) )
107, 9mpan2 671 . . . . 5  |-  ( k  e.  NN  ->  (
( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  / 
k ) ) `  k )  =  ( sup ( T ,  RR ,  <  )  / 
k ) )
116, 10sylan9eq 2528 . . . 4  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( ( F `  x ) `  k
)  =  ( sup ( T ,  RR ,  <  )  /  k
) )
12 rpnnen1.1 . . . . . . . . 9  |-  T  =  { n  e.  ZZ  |  ( n  / 
k )  <  x }
1312rabeq2i 3115 . . . . . . . 8  |-  ( n  e.  T  <->  ( n  e.  ZZ  /\  ( n  /  k )  < 
x ) )
14 zre 10880 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  n  e.  RR )
1514adantl 466 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  n  e.  RR )
16 simpll 753 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  x  e.  RR )
17 nnre 10555 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  k  e.  RR )
18 nngt0 10577 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  0  <  k )
1917, 18jca 532 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
k  e.  RR  /\  0  <  k ) )
2019ad2antlr 726 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  ( k  e.  RR  /\  0  < 
k ) )
21 ltdivmul 10429 . . . . . . . . . . 11  |-  ( ( n  e.  RR  /\  x  e.  RR  /\  (
k  e.  RR  /\  0  <  k ) )  ->  ( ( n  /  k )  < 
x  <->  n  <  ( k  x.  x ) ) )
2215, 16, 20, 21syl3anc 1228 . . . . . . . . . 10  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  ( ( n  /  k )  < 
x  <->  n  <  ( k  x.  x ) ) )
2317ad2antlr 726 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  k  e.  RR )
24 remulcl 9589 . . . . . . . . . . . 12  |-  ( ( k  e.  RR  /\  x  e.  RR )  ->  ( k  x.  x
)  e.  RR )
2523, 16, 24syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  ( k  x.  x )  e.  RR )
26 ltle 9685 . . . . . . . . . . 11  |-  ( ( n  e.  RR  /\  ( k  x.  x
)  e.  RR )  ->  ( n  < 
( k  x.  x
)  ->  n  <_  ( k  x.  x ) ) )
2715, 25, 26syl2anc 661 . . . . . . . . . 10  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  ( n  < 
( k  x.  x
)  ->  n  <_  ( k  x.  x ) ) )
2822, 27sylbid 215 . . . . . . . . 9  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  ( ( n  /  k )  < 
x  ->  n  <_  ( k  x.  x ) ) )
2928impr 619 . . . . . . . 8  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  ( n  e.  ZZ  /\  ( n  /  k )  < 
x ) )  ->  n  <_  ( k  x.  x ) )
3013, 29sylan2b 475 . . . . . . 7  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  T
)  ->  n  <_  ( k  x.  x ) )
3130ralrimiva 2881 . . . . . 6  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  A. n  e.  T  n  <_  ( k  x.  x ) )
32 ssrab2 3590 . . . . . . . . . 10  |-  { n  e.  ZZ  |  ( n  /  k )  < 
x }  C_  ZZ
3312, 32eqsstri 3539 . . . . . . . . 9  |-  T  C_  ZZ
34 zssre 10883 . . . . . . . . 9  |-  ZZ  C_  RR
3533, 34sstri 3518 . . . . . . . 8  |-  T  C_  RR
3635a1i 11 . . . . . . 7  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  T  C_  RR )
3724ancoms 453 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  k  e.  RR )  ->  ( k  x.  x
)  e.  RR )
3817, 37sylan2 474 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( k  x.  x
)  e.  RR )
39 btwnz 10975 . . . . . . . . . . . 12  |-  ( ( k  x.  x )  e.  RR  ->  ( E. n  e.  ZZ  n  <  ( k  x.  x )  /\  E. n  e.  ZZ  (
k  x.  x )  <  n ) )
4039simpld 459 . . . . . . . . . . 11  |-  ( ( k  x.  x )  e.  RR  ->  E. n  e.  ZZ  n  <  (
k  x.  x ) )
4138, 40syl 16 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  E. n  e.  ZZ  n  <  ( k  x.  x ) )
4222rexbidva 2975 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( E. n  e.  ZZ  ( n  / 
k )  <  x  <->  E. n  e.  ZZ  n  <  ( k  x.  x
) ) )
4341, 42mpbird 232 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  E. n  e.  ZZ  ( n  /  k
)  <  x )
44 rabn0 3810 . . . . . . . . 9  |-  ( { n  e.  ZZ  | 
( n  /  k
)  <  x }  =/=  (/)  <->  E. n  e.  ZZ  ( n  /  k
)  <  x )
4543, 44sylibr 212 . . . . . . . 8  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  { n  e.  ZZ  |  ( n  / 
k )  <  x }  =/=  (/) )
4612neeq1i 2752 . . . . . . . 8  |-  ( T  =/=  (/)  <->  { n  e.  ZZ  |  ( n  / 
k )  <  x }  =/=  (/) )
4745, 46sylibr 212 . . . . . . 7  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  T  =/=  (/) )
48 breq2 4457 . . . . . . . . . 10  |-  ( y  =  ( k  x.  x )  ->  (
n  <_  y  <->  n  <_  ( k  x.  x ) ) )
4948ralbidv 2906 . . . . . . . . 9  |-  ( y  =  ( k  x.  x )  ->  ( A. n  e.  T  n  <_  y  <->  A. n  e.  T  n  <_  ( k  x.  x ) ) )
5049rspcev 3219 . . . . . . . 8  |-  ( ( ( k  x.  x
)  e.  RR  /\  A. n  e.  T  n  <_  ( k  x.  x ) )  ->  E. y  e.  RR  A. n  e.  T  n  <_  y )
5138, 31, 50syl2anc 661 . . . . . . 7  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  E. y  e.  RR  A. n  e.  T  n  <_  y )
52 suprleub 10519 . . . . . . 7  |-  ( ( ( T  C_  RR  /\  T  =/=  (/)  /\  E. y  e.  RR  A. n  e.  T  n  <_  y )  /\  ( k  x.  x )  e.  RR )  ->  ( sup ( T ,  RR ,  <  )  <_  (
k  x.  x )  <->  A. n  e.  T  n  <_  ( k  x.  x ) ) )
5336, 47, 51, 38, 52syl31anc 1231 . . . . . 6  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( sup ( T ,  RR ,  <  )  <_  ( k  x.  x )  <->  A. n  e.  T  n  <_  ( k  x.  x ) ) )
5431, 53mpbird 232 . . . . 5  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  sup ( T ,  RR ,  <  )  <_ 
( k  x.  x
) )
5512, 3rpnnen1lem2 11221 . . . . . . 7  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  sup ( T ,  RR ,  <  )  e.  ZZ )
5655zred 10978 . . . . . 6  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  sup ( T ,  RR ,  <  )  e.  RR )
57 simpl 457 . . . . . 6  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  x  e.  RR )
5819adantl 466 . . . . . 6  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( k  e.  RR  /\  0  <  k ) )
59 ledivmul 10430 . . . . . 6  |-  ( ( sup ( T ,  RR ,  <  )  e.  RR  /\  x  e.  RR  /\  ( k  e.  RR  /\  0  <  k ) )  -> 
( ( sup ( T ,  RR ,  <  )  /  k )  <_  x  <->  sup ( T ,  RR ,  <  )  <_  ( k  x.  x ) ) )
6056, 57, 58, 59syl3anc 1228 . . . . 5  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( ( sup ( T ,  RR ,  <  )  /  k )  <_  x  <->  sup ( T ,  RR ,  <  )  <_  ( k  x.  x ) ) )
6154, 60mpbird 232 . . . 4  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( sup ( T ,  RR ,  <  )  /  k )  <_  x )
6211, 61eqbrtrd 4473 . . 3  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( ( F `  x ) `  k
)  <_  x )
6362ralrimiva 2881 . 2  |-  ( x  e.  RR  ->  A. k  e.  NN  ( ( F `
 x ) `  k )  <_  x
)
6412, 3rpnnen1lem1 11220 . . . 4  |-  ( x  e.  RR  ->  ( F `  x )  e.  ( QQ  ^m  NN ) )
65 qexALT 11209 . . . . 5  |-  QQ  e.  _V
6665, 1elmap 7459 . . . 4  |-  ( ( F `  x )  e.  ( QQ  ^m  NN )  <->  ( F `  x ) : NN --> QQ )
6764, 66sylib 196 . . 3  |-  ( x  e.  RR  ->  ( F `  x ) : NN --> QQ )
68 ffn 5737 . . 3  |-  ( ( F `  x ) : NN --> QQ  ->  ( F `  x )  Fn  NN )
69 breq1 4456 . . . 4  |-  ( n  =  ( ( F `
 x ) `  k )  ->  (
n  <_  x  <->  ( ( F `  x ) `  k )  <_  x
) )
7069ralrn 6035 . . 3  |-  ( ( F `  x )  Fn  NN  ->  ( A. n  e.  ran  ( F `  x ) n  <_  x  <->  A. k  e.  NN  ( ( F `
 x ) `  k )  <_  x
) )
7167, 68, 703syl 20 . 2  |-  ( x  e.  RR  ->  ( A. n  e.  ran  ( F `  x ) n  <_  x  <->  A. k  e.  NN  ( ( F `
 x ) `  k )  <_  x
) )
7263, 71mpbird 232 1  |-  ( x  e.  RR  ->  A. n  e.  ran  ( F `  x ) n  <_  x )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2817   E.wrex 2818   {crab 2821   _Vcvv 3118    C_ wss 3481   (/)c0 3790   class class class wbr 4453    |-> cmpt 4511   ran crn 5006    Fn wfn 5589   -->wf 5590   ` cfv 5594  (class class class)co 6295    ^m cmap 7432   supcsup 7912   RRcr 9503   0cc0 9504    x. cmul 9509    < clt 9640    <_ cle 9641    / cdiv 10218   NNcn 10548   ZZcz 10876   QQcq 11194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-inf2 8070  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-er 7323  df-map 7434  df-en 7529  df-dom 7530  df-sdom 7531  df-sup 7913  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-n0 10808  df-z 10877  df-q 11195
This theorem is referenced by:  rpnnen1lem4  11223  rpnnen1lem5  11224
  Copyright terms: Public domain W3C validator