MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen1lem1 Structured version   Visualization version   Unicode version

Theorem rpnnen1lem1 11324
Description: Lemma for rpnnen1 11329. (Contributed by Mario Carneiro, 12-May-2013.)
Hypotheses
Ref Expression
rpnnen1.1  |-  T  =  { n  e.  ZZ  |  ( n  / 
k )  <  x }
rpnnen1.2  |-  F  =  ( x  e.  RR  |->  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  / 
k ) ) )
Assertion
Ref Expression
rpnnen1lem1  |-  ( x  e.  RR  ->  ( F `  x )  e.  ( QQ  ^m  NN ) )
Distinct variable groups:    k, F, n, x    T, n
Allowed substitution hints:    T( x, k)

Proof of Theorem rpnnen1lem1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nnex 10648 . . . 4  |-  NN  e.  _V
21mptex 6166 . . 3  |-  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  /  k
) )  e.  _V
3 rpnnen1.2 . . . 4  |-  F  =  ( x  e.  RR  |->  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  / 
k ) ) )
43fvmpt2 5985 . . 3  |-  ( ( x  e.  RR  /\  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  / 
k ) )  e. 
_V )  ->  ( F `  x )  =  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  /  k ) ) )
52, 4mpan2 682 . 2  |-  ( x  e.  RR  ->  ( F `  x )  =  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  /  k ) ) )
6 rpnnen1.1 . . . . . . 7  |-  T  =  { n  e.  ZZ  |  ( n  / 
k )  <  x }
7 ssrab2 3526 . . . . . . 7  |-  { n  e.  ZZ  |  ( n  /  k )  < 
x }  C_  ZZ
86, 7eqsstri 3474 . . . . . 6  |-  T  C_  ZZ
98a1i 11 . . . . . . 7  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  T  C_  ZZ )
10 nnre 10649 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  k  e.  RR )
11 remulcl 9655 . . . . . . . . . . . . 13  |-  ( ( k  e.  RR  /\  x  e.  RR )  ->  ( k  x.  x
)  e.  RR )
1211ancoms 459 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  k  e.  RR )  ->  ( k  x.  x
)  e.  RR )
1310, 12sylan2 481 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( k  x.  x
)  e.  RR )
14 btwnz 11071 . . . . . . . . . . . 12  |-  ( ( k  x.  x )  e.  RR  ->  ( E. n  e.  ZZ  n  <  ( k  x.  x )  /\  E. n  e.  ZZ  (
k  x.  x )  <  n ) )
1514simpld 465 . . . . . . . . . . 11  |-  ( ( k  x.  x )  e.  RR  ->  E. n  e.  ZZ  n  <  (
k  x.  x ) )
1613, 15syl 17 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  E. n  e.  ZZ  n  <  ( k  x.  x ) )
17 zre 10975 . . . . . . . . . . . . 13  |-  ( n  e.  ZZ  ->  n  e.  RR )
1817adantl 472 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  n  e.  RR )
19 simpll 765 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  x  e.  RR )
20 nngt0 10671 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  0  <  k )
2110, 20jca 539 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
k  e.  RR  /\  0  <  k ) )
2221ad2antlr 738 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  ( k  e.  RR  /\  0  < 
k ) )
23 ltdivmul 10513 . . . . . . . . . . . 12  |-  ( ( n  e.  RR  /\  x  e.  RR  /\  (
k  e.  RR  /\  0  <  k ) )  ->  ( ( n  /  k )  < 
x  <->  n  <  ( k  x.  x ) ) )
2418, 19, 22, 23syl3anc 1276 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  ( ( n  /  k )  < 
x  <->  n  <  ( k  x.  x ) ) )
2524rexbidva 2910 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( E. n  e.  ZZ  ( n  / 
k )  <  x  <->  E. n  e.  ZZ  n  <  ( k  x.  x
) ) )
2616, 25mpbird 240 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  E. n  e.  ZZ  ( n  /  k
)  <  x )
27 rabn0 3764 . . . . . . . . 9  |-  ( { n  e.  ZZ  | 
( n  /  k
)  <  x }  =/=  (/)  <->  E. n  e.  ZZ  ( n  /  k
)  <  x )
2826, 27sylibr 217 . . . . . . . 8  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  { n  e.  ZZ  |  ( n  / 
k )  <  x }  =/=  (/) )
296neeq1i 2700 . . . . . . . 8  |-  ( T  =/=  (/)  <->  { n  e.  ZZ  |  ( n  / 
k )  <  x }  =/=  (/) )
3028, 29sylibr 217 . . . . . . 7  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  T  =/=  (/) )
316rabeq2i 3054 . . . . . . . . . 10  |-  ( n  e.  T  <->  ( n  e.  ZZ  /\  ( n  /  k )  < 
x ) )
3210ad2antlr 738 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  k  e.  RR )
3332, 19, 11syl2anc 671 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  ( k  x.  x )  e.  RR )
34 ltle 9753 . . . . . . . . . . . . 13  |-  ( ( n  e.  RR  /\  ( k  x.  x
)  e.  RR )  ->  ( n  < 
( k  x.  x
)  ->  n  <_  ( k  x.  x ) ) )
3518, 33, 34syl2anc 671 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  ( n  < 
( k  x.  x
)  ->  n  <_  ( k  x.  x ) ) )
3624, 35sylbid 223 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  ( ( n  /  k )  < 
x  ->  n  <_  ( k  x.  x ) ) )
3736impr 629 . . . . . . . . . 10  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  ( n  e.  ZZ  /\  ( n  /  k )  < 
x ) )  ->  n  <_  ( k  x.  x ) )
3831, 37sylan2b 482 . . . . . . . . 9  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  T
)  ->  n  <_  ( k  x.  x ) )
3938ralrimiva 2814 . . . . . . . 8  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  A. n  e.  T  n  <_  ( k  x.  x ) )
40 breq2 4422 . . . . . . . . . 10  |-  ( y  =  ( k  x.  x )  ->  (
n  <_  y  <->  n  <_  ( k  x.  x ) ) )
4140ralbidv 2839 . . . . . . . . 9  |-  ( y  =  ( k  x.  x )  ->  ( A. n  e.  T  n  <_  y  <->  A. n  e.  T  n  <_  ( k  x.  x ) ) )
4241rspcev 3162 . . . . . . . 8  |-  ( ( ( k  x.  x
)  e.  RR  /\  A. n  e.  T  n  <_  ( k  x.  x ) )  ->  E. y  e.  RR  A. n  e.  T  n  <_  y )
4313, 39, 42syl2anc 671 . . . . . . 7  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  E. y  e.  RR  A. n  e.  T  n  <_  y )
44 suprzcl 11049 . . . . . . 7  |-  ( ( T  C_  ZZ  /\  T  =/=  (/)  /\  E. y  e.  RR  A. n  e.  T  n  <_  y
)  ->  sup ( T ,  RR ,  <  )  e.  T )
459, 30, 43, 44syl3anc 1276 . . . . . 6  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  sup ( T ,  RR ,  <  )  e.  T )
468, 45sseldi 3442 . . . . 5  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  sup ( T ,  RR ,  <  )  e.  ZZ )
47 znq 11302 . . . . 5  |-  ( ( sup ( T ,  RR ,  <  )  e.  ZZ  /\  k  e.  NN )  ->  ( sup ( T ,  RR ,  <  )  /  k
)  e.  QQ )
4846, 47sylancom 678 . . . 4  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( sup ( T ,  RR ,  <  )  /  k )  e.  QQ )
49 eqid 2462 . . . 4  |-  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  /  k
) )  =  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  / 
k ) )
5048, 49fmptd 6074 . . 3  |-  ( x  e.  RR  ->  (
k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  / 
k ) ) : NN --> QQ )
51 qex 11310 . . . 4  |-  QQ  e.  _V
5251, 1elmap 7531 . . 3  |-  ( ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  / 
k ) )  e.  ( QQ  ^m  NN ) 
<->  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  / 
k ) ) : NN --> QQ )
5350, 52sylibr 217 . 2  |-  ( x  e.  RR  ->  (
k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  / 
k ) )  e.  ( QQ  ^m  NN ) )
545, 53eqeltrd 2540 1  |-  ( x  e.  RR  ->  ( F `  x )  e.  ( QQ  ^m  NN ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 375    = wceq 1455    e. wcel 1898    =/= wne 2633   A.wral 2749   E.wrex 2750   {crab 2753   _Vcvv 3057    C_ wss 3416   (/)c0 3743   class class class wbr 4418    |-> cmpt 4477   -->wf 5601   ` cfv 5605  (class class class)co 6320    ^m cmap 7503   supcsup 7985   RRcr 9569   0cc0 9570    x. cmul 9575    < clt 9706    <_ cle 9707    / cdiv 10302   NNcn 10642   ZZcz 10971   QQcq 11298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-rep 4531  ax-sep 4541  ax-nul 4550  ax-pow 4598  ax-pr 4656  ax-un 6615  ax-cnex 9626  ax-resscn 9627  ax-1cn 9628  ax-icn 9629  ax-addcl 9630  ax-addrcl 9631  ax-mulcl 9632  ax-mulrcl 9633  ax-mulcom 9634  ax-addass 9635  ax-mulass 9636  ax-distr 9637  ax-i2m1 9638  ax-1ne0 9639  ax-1rid 9640  ax-rnegex 9641  ax-rrecex 9642  ax-cnre 9643  ax-pre-lttri 9644  ax-pre-lttrn 9645  ax-pre-ltadd 9646  ax-pre-mulgt0 9647  ax-pre-sup 9648
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-nel 2636  df-ral 2754  df-rex 2755  df-reu 2756  df-rmo 2757  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4213  df-iun 4294  df-br 4419  df-opab 4478  df-mpt 4479  df-tr 4514  df-eprel 4767  df-id 4771  df-po 4777  df-so 4778  df-fr 4815  df-we 4817  df-xp 4862  df-rel 4863  df-cnv 4864  df-co 4865  df-dm 4866  df-rn 4867  df-res 4868  df-ima 4869  df-pred 5403  df-ord 5449  df-on 5450  df-lim 5451  df-suc 5452  df-iota 5569  df-fun 5607  df-fn 5608  df-f 5609  df-f1 5610  df-fo 5611  df-f1o 5612  df-fv 5613  df-riota 6282  df-ov 6323  df-oprab 6324  df-mpt2 6325  df-om 6725  df-1st 6825  df-2nd 6826  df-wrecs 7059  df-recs 7121  df-rdg 7159  df-er 7394  df-map 7505  df-en 7601  df-dom 7602  df-sdom 7603  df-sup 7987  df-pnf 9708  df-mnf 9709  df-xr 9710  df-ltxr 9711  df-le 9712  df-sub 9893  df-neg 9894  df-div 10303  df-nn 10643  df-n0 10904  df-z 10972  df-q 11299
This theorem is referenced by:  rpnnen1lem3  11326  rpnnen1lem4  11327  rpnnen1lem5  11328  rpnnen1  11329
  Copyright terms: Public domain W3C validator