MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpneg Structured version   Unicode version

Theorem rpneg 11251
Description: Either a nonzero real or its negation is a positive real, but not both. Axiom 8 of [Apostol] p. 20. (Contributed by NM, 7-Nov-2008.)
Assertion
Ref Expression
rpneg  |-  ( ( A  e.  RR  /\  A  =/=  0 )  -> 
( A  e.  RR+  <->  -.  -u A  e.  RR+ )
)

Proof of Theorem rpneg
StepHypRef Expression
1 0re 9585 . . . . . . . 8  |-  0  e.  RR
2 ltle 9662 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <  A  ->  0  <_  A )
)
31, 2mpan 668 . . . . . . 7  |-  ( A  e.  RR  ->  (
0  <  A  ->  0  <_  A ) )
43imp 427 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <_  A )
54olcd 391 . . . . 5  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( -.  -u A  e.  RR  \/  0  <_  A ) )
6 renegcl 9873 . . . . . . . . 9  |-  ( A  e.  RR  ->  -u A  e.  RR )
76pm2.24d 143 . . . . . . . 8  |-  ( A  e.  RR  ->  ( -.  -u A  e.  RR  ->  0  <  A ) )
87adantr 463 . . . . . . 7  |-  ( ( A  e.  RR  /\  A  =/=  0 )  -> 
( -.  -u A  e.  RR  ->  0  <  A ) )
9 ltlen 9675 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <  A  <->  ( 0  <_  A  /\  A  =/=  0 ) ) )
101, 9mpan 668 . . . . . . . . . 10  |-  ( A  e.  RR  ->  (
0  <  A  <->  ( 0  <_  A  /\  A  =/=  0 ) ) )
1110biimprd 223 . . . . . . . . 9  |-  ( A  e.  RR  ->  (
( 0  <_  A  /\  A  =/=  0
)  ->  0  <  A ) )
1211expcomd 436 . . . . . . . 8  |-  ( A  e.  RR  ->  ( A  =/=  0  ->  (
0  <_  A  ->  0  <  A ) ) )
1312imp 427 . . . . . . 7  |-  ( ( A  e.  RR  /\  A  =/=  0 )  -> 
( 0  <_  A  ->  0  <  A ) )
148, 13jaod 378 . . . . . 6  |-  ( ( A  e.  RR  /\  A  =/=  0 )  -> 
( ( -.  -u A  e.  RR  \/  0  <_  A )  ->  0  <  A ) )
15 simpl 455 . . . . . 6  |-  ( ( A  e.  RR  /\  A  =/=  0 )  ->  A  e.  RR )
1614, 15jctild 541 . . . . 5  |-  ( ( A  e.  RR  /\  A  =/=  0 )  -> 
( ( -.  -u A  e.  RR  \/  0  <_  A )  ->  ( A  e.  RR  /\  0  <  A ) ) )
175, 16impbid2 204 . . . 4  |-  ( ( A  e.  RR  /\  A  =/=  0 )  -> 
( ( A  e.  RR  /\  0  < 
A )  <->  ( -.  -u A  e.  RR  \/  0  <_  A ) ) )
18 lenlt 9652 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <_  A  <->  -.  A  <  0 ) )
191, 18mpan 668 . . . . . . 7  |-  ( A  e.  RR  ->  (
0  <_  A  <->  -.  A  <  0 ) )
20 lt0neg1 10054 . . . . . . . 8  |-  ( A  e.  RR  ->  ( A  <  0  <->  0  <  -u A ) )
2120notbid 292 . . . . . . 7  |-  ( A  e.  RR  ->  ( -.  A  <  0  <->  -.  0  <  -u A
) )
2219, 21bitrd 253 . . . . . 6  |-  ( A  e.  RR  ->  (
0  <_  A  <->  -.  0  <  -u A ) )
2322adantr 463 . . . . 5  |-  ( ( A  e.  RR  /\  A  =/=  0 )  -> 
( 0  <_  A  <->  -.  0  <  -u A
) )
2423orbi2d 699 . . . 4  |-  ( ( A  e.  RR  /\  A  =/=  0 )  -> 
( ( -.  -u A  e.  RR  \/  0  <_  A )  <->  ( -.  -u A  e.  RR  \/  -.  0  <  -u A
) ) )
2517, 24bitrd 253 . . 3  |-  ( ( A  e.  RR  /\  A  =/=  0 )  -> 
( ( A  e.  RR  /\  0  < 
A )  <->  ( -.  -u A  e.  RR  \/  -.  0  <  -u A
) ) )
26 ianor 486 . . 3  |-  ( -.  ( -u A  e.  RR  /\  0  <  -u A )  <->  ( -.  -u A  e.  RR  \/  -.  0  <  -u A
) )
2725, 26syl6bbr 263 . 2  |-  ( ( A  e.  RR  /\  A  =/=  0 )  -> 
( ( A  e.  RR  /\  0  < 
A )  <->  -.  ( -u A  e.  RR  /\  0  <  -u A ) ) )
28 elrp 11223 . 2  |-  ( A  e.  RR+  <->  ( A  e.  RR  /\  0  < 
A ) )
29 elrp 11223 . . 3  |-  ( -u A  e.  RR+  <->  ( -u A  e.  RR  /\  0  <  -u A ) )
3029notbii 294 . 2  |-  ( -.  -u A  e.  RR+  <->  -.  ( -u A  e.  RR  /\  0  <  -u A ) )
3127, 28, 303bitr4g 288 1  |-  ( ( A  e.  RR  /\  A  =/=  0 )  -> 
( A  e.  RR+  <->  -.  -u A  e.  RR+ )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    e. wcel 1823    =/= wne 2649   class class class wbr 4439   RRcr 9480   0cc0 9481    < clt 9617    <_ cle 9618   -ucneg 9797   RR+crp 11221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-po 4789  df-so 4790  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-rp 11222
This theorem is referenced by:  cnpart  13155  angpined  23358  signsply0  28772
  Copyright terms: Public domain W3C validator