MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rplogsumlem2 Structured version   Unicode version

Theorem rplogsumlem2 24051
Description: Lemma for rplogsum 24093. Equation 9.2.14 of [Shapiro], p. 331. (Contributed by Mario Carneiro, 2-May-2016.)
Assertion
Ref Expression
rplogsumlem2  |-  ( A  e.  ZZ  ->  sum_ n  e.  ( 1 ... A
) ( ( (Λ `  n )  -  if ( n  e.  Prime ,  ( log `  n
) ,  0 ) )  /  n )  <_  2 )
Distinct variable group:    A, n

Proof of Theorem rplogsumlem2
Dummy variables  k  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 flid 11982 . . . . 5  |-  ( A  e.  ZZ  ->  ( |_ `  A )  =  A )
21oveq2d 6294 . . . 4  |-  ( A  e.  ZZ  ->  (
1 ... ( |_ `  A ) )  =  ( 1 ... A
) )
32sumeq1d 13672 . . 3  |-  ( A  e.  ZZ  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( ( (Λ `  n
)  -  if ( n  e.  Prime ,  ( log `  n ) ,  0 ) )  /  n )  = 
sum_ n  e.  (
1 ... A ) ( ( (Λ `  n
)  -  if ( n  e.  Prime ,  ( log `  n ) ,  0 ) )  /  n ) )
4 fveq2 5849 . . . . . 6  |-  ( n  =  ( p ^
k )  ->  (Λ `  n )  =  (Λ `  ( p ^ k
) ) )
5 eleq1 2474 . . . . . . 7  |-  ( n  =  ( p ^
k )  ->  (
n  e.  Prime  <->  ( p ^ k )  e. 
Prime ) )
6 fveq2 5849 . . . . . . 7  |-  ( n  =  ( p ^
k )  ->  ( log `  n )  =  ( log `  (
p ^ k ) ) )
75, 6ifbieq1d 3908 . . . . . 6  |-  ( n  =  ( p ^
k )  ->  if ( n  e.  Prime ,  ( log `  n
) ,  0 )  =  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )
84, 7oveq12d 6296 . . . . 5  |-  ( n  =  ( p ^
k )  ->  (
(Λ `  n )  -  if ( n  e.  Prime ,  ( log `  n
) ,  0 ) )  =  ( (Λ `  ( p ^ k
) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) ) )
9 id 22 . . . . 5  |-  ( n  =  ( p ^
k )  ->  n  =  ( p ^
k ) )
108, 9oveq12d 6296 . . . 4  |-  ( n  =  ( p ^
k )  ->  (
( (Λ `  n )  -  if ( n  e. 
Prime ,  ( log `  n ) ,  0 ) )  /  n
)  =  ( ( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  /  (
p ^ k ) ) )
11 zre 10909 . . . 4  |-  ( A  e.  ZZ  ->  A  e.  RR )
12 elfznn 11768 . . . . . . . . 9  |-  ( n  e.  ( 1 ... ( |_ `  A
) )  ->  n  e.  NN )
1312adantl 464 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  NN )
14 vmacl 23773 . . . . . . . 8  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
1513, 14syl 17 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  (Λ `  n )  e.  RR )
1613nnrpd 11302 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  RR+ )
1716relogcld 23302 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( log `  n
)  e.  RR )
18 0re 9626 . . . . . . . 8  |-  0  e.  RR
19 ifcl 3927 . . . . . . . 8  |-  ( ( ( log `  n
)  e.  RR  /\  0  e.  RR )  ->  if ( n  e. 
Prime ,  ( log `  n ) ,  0 )  e.  RR )
2017, 18, 19sylancl 660 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  if ( n  e.  Prime ,  ( log `  n ) ,  0 )  e.  RR )
2115, 20resubcld 10028 . . . . . 6  |-  ( ( A  e.  ZZ  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (Λ `  n
)  -  if ( n  e.  Prime ,  ( log `  n ) ,  0 ) )  e.  RR )
2221, 13nndivred 10625 . . . . 5  |-  ( ( A  e.  ZZ  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( (Λ `  n )  -  if ( n  e.  Prime ,  ( log `  n
) ,  0 ) )  /  n )  e.  RR )
2322recnd 9652 . . . 4  |-  ( ( A  e.  ZZ  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( (Λ `  n )  -  if ( n  e.  Prime ,  ( log `  n
) ,  0 ) )  /  n )  e.  CC )
24 simprr 758 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  -> 
(Λ `  n )  =  0 )
25 vmaprm 23772 . . . . . . . . . . . . 13  |-  ( n  e.  Prime  ->  (Λ `  n
)  =  ( log `  n ) )
26 prmnn 14429 . . . . . . . . . . . . . . 15  |-  ( n  e.  Prime  ->  n  e.  NN )
2726nnred 10591 . . . . . . . . . . . . . 14  |-  ( n  e.  Prime  ->  n  e.  RR )
28 prmgt1 14445 . . . . . . . . . . . . . 14  |-  ( n  e.  Prime  ->  1  < 
n )
2927, 28rplogcld 23308 . . . . . . . . . . . . 13  |-  ( n  e.  Prime  ->  ( log `  n )  e.  RR+ )
3025, 29eqeltrd 2490 . . . . . . . . . . . 12  |-  ( n  e.  Prime  ->  (Λ `  n
)  e.  RR+ )
3130rpne0d 11309 . . . . . . . . . . 11  |-  ( n  e.  Prime  ->  (Λ `  n
)  =/=  0 )
3231necon2bi 2640 . . . . . . . . . 10  |-  ( (Λ `  n )  =  0  ->  -.  n  e.  Prime )
3332ad2antll 727 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  ->  -.  n  e.  Prime )
3433iffalsed 3896 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  ->  if ( n  e.  Prime ,  ( log `  n
) ,  0 )  =  0 )
3524, 34oveq12d 6296 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  -> 
( (Λ `  n )  -  if ( n  e. 
Prime ,  ( log `  n ) ,  0 ) )  =  ( 0  -  0 ) )
36 0m0e0 10686 . . . . . . 7  |-  ( 0  -  0 )  =  0
3735, 36syl6eq 2459 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  -> 
( (Λ `  n )  -  if ( n  e. 
Prime ,  ( log `  n ) ,  0 ) )  =  0 )
3837oveq1d 6293 . . . . 5  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  -> 
( ( (Λ `  n
)  -  if ( n  e.  Prime ,  ( log `  n ) ,  0 ) )  /  n )  =  ( 0  /  n
) )
3912ad2antrl 726 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  ->  n  e.  NN )
4039nnrpd 11302 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  ->  n  e.  RR+ )
4140rpcnne0d 11313 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  -> 
( n  e.  CC  /\  n  =/=  0 ) )
42 div0 10276 . . . . . 6  |-  ( ( n  e.  CC  /\  n  =/=  0 )  -> 
( 0  /  n
)  =  0 )
4341, 42syl 17 . . . . 5  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  -> 
( 0  /  n
)  =  0 )
4438, 43eqtrd 2443 . . . 4  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  -> 
( ( (Λ `  n
)  -  if ( n  e.  Prime ,  ( log `  n ) ,  0 ) )  /  n )  =  0 )
4510, 11, 23, 44fsumvma2 23870 . . 3  |-  ( A  e.  ZZ  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( ( (Λ `  n
)  -  if ( n  e.  Prime ,  ( log `  n ) ,  0 ) )  /  n )  = 
sum_ p  e.  (
( 0 [,] A
)  i^i  Prime ) sum_ k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k
) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) )  /  ( p ^ k ) ) )
463, 45eqtr3d 2445 . 2  |-  ( A  e.  ZZ  ->  sum_ n  e.  ( 1 ... A
) ( ( (Λ `  n )  -  if ( n  e.  Prime ,  ( log `  n
) ,  0 ) )  /  n )  =  sum_ p  e.  ( ( 0 [,] A
)  i^i  Prime ) sum_ k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k
) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) )  /  ( p ^ k ) ) )
47 fzfid 12124 . . . . 5  |-  ( A  e.  ZZ  ->  (
2 ... ( ( abs `  A )  +  1 ) )  e.  Fin )
48 inss2 3660 . . . . . . . . . . . 12  |-  ( ( 0 [,] A )  i^i  Prime )  C_  Prime
49 simpr 459 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  ( (
0 [,] A )  i^i  Prime ) )
5048, 49sseldi 3440 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  Prime )
51 prmnn 14429 . . . . . . . . . . 11  |-  ( p  e.  Prime  ->  p  e.  NN )
5250, 51syl 17 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  NN )
5352nnred 10591 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  RR )
5411adantr 463 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  A  e.  RR )
55 zcn 10910 . . . . . . . . . . . 12  |-  ( A  e.  ZZ  ->  A  e.  CC )
5655abscld 13416 . . . . . . . . . . 11  |-  ( A  e.  ZZ  ->  ( abs `  A )  e.  RR )
57 peano2re 9787 . . . . . . . . . . 11  |-  ( ( abs `  A )  e.  RR  ->  (
( abs `  A
)  +  1 )  e.  RR )
5856, 57syl 17 . . . . . . . . . 10  |-  ( A  e.  ZZ  ->  (
( abs `  A
)  +  1 )  e.  RR )
5958adantr 463 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( abs `  A
)  +  1 )  e.  RR )
60 inss1 3659 . . . . . . . . . . . . 13  |-  ( ( 0 [,] A )  i^i  Prime )  C_  (
0 [,] A )
6160sseli 3438 . . . . . . . . . . . 12  |-  ( p  e.  ( ( 0 [,] A )  i^i 
Prime )  ->  p  e.  ( 0 [,] A
) )
62 elicc2 11643 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( p  e.  ( 0 [,] A )  <-> 
( p  e.  RR  /\  0  <_  p  /\  p  <_  A ) ) )
6318, 11, 62sylancr 661 . . . . . . . . . . . 12  |-  ( A  e.  ZZ  ->  (
p  e.  ( 0 [,] A )  <->  ( p  e.  RR  /\  0  <_  p  /\  p  <_  A
) ) )
6461, 63syl5ib 219 . . . . . . . . . . 11  |-  ( A  e.  ZZ  ->  (
p  e.  ( ( 0 [,] A )  i^i  Prime )  ->  (
p  e.  RR  /\  0  <_  p  /\  p  <_  A ) ) )
6564imp 427 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  e.  RR  /\  0  <_  p  /\  p  <_  A ) )
6665simp3d 1011 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  <_  A )
6755adantr 463 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  A  e.  CC )
6867abscld 13416 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( abs `  A
)  e.  RR )
6954leabsd 13395 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  A  <_  ( abs `  A
) )
7068lep1d 10517 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( abs `  A
)  <_  ( ( abs `  A )  +  1 ) )
7154, 68, 59, 69, 70letrd 9773 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  A  <_  ( ( abs `  A )  +  1 ) )
7253, 54, 59, 66, 71letrd 9773 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  <_  ( ( abs `  A )  +  1 ) )
73 prmuz2 14444 . . . . . . . . . 10  |-  ( p  e.  Prime  ->  p  e.  ( ZZ>= `  2 )
)
7450, 73syl 17 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  ( ZZ>= ` 
2 ) )
75 nn0abscl 13294 . . . . . . . . . . . 12  |-  ( A  e.  ZZ  ->  ( abs `  A )  e. 
NN0 )
76 nn0p1nn 10876 . . . . . . . . . . . 12  |-  ( ( abs `  A )  e.  NN0  ->  ( ( abs `  A )  +  1 )  e.  NN )
7775, 76syl 17 . . . . . . . . . . 11  |-  ( A  e.  ZZ  ->  (
( abs `  A
)  +  1 )  e.  NN )
7877nnzd 11007 . . . . . . . . . 10  |-  ( A  e.  ZZ  ->  (
( abs `  A
)  +  1 )  e.  ZZ )
7978adantr 463 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( abs `  A
)  +  1 )  e.  ZZ )
80 elfz5 11734 . . . . . . . . 9  |-  ( ( p  e.  ( ZZ>= ` 
2 )  /\  (
( abs `  A
)  +  1 )  e.  ZZ )  -> 
( p  e.  ( 2 ... ( ( abs `  A )  +  1 ) )  <-> 
p  <_  ( ( abs `  A )  +  1 ) ) )
8174, 79, 80syl2anc 659 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  e.  ( 2 ... ( ( abs `  A )  +  1 ) )  <-> 
p  <_  ( ( abs `  A )  +  1 ) ) )
8272, 81mpbird 232 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )
8382ex 432 . . . . . 6  |-  ( A  e.  ZZ  ->  (
p  e.  ( ( 0 [,] A )  i^i  Prime )  ->  p  e.  ( 2 ... (
( abs `  A
)  +  1 ) ) ) )
8483ssrdv 3448 . . . . 5  |-  ( A  e.  ZZ  ->  (
( 0 [,] A
)  i^i  Prime )  C_  ( 2 ... (
( abs `  A
)  +  1 ) ) )
85 ssfi 7775 . . . . 5  |-  ( ( ( 2 ... (
( abs `  A
)  +  1 ) )  e.  Fin  /\  ( ( 0 [,] A )  i^i  Prime ) 
C_  ( 2 ... ( ( abs `  A
)  +  1 ) ) )  ->  (
( 0 [,] A
)  i^i  Prime )  e. 
Fin )
8647, 84, 85syl2anc 659 . . . 4  |-  ( A  e.  ZZ  ->  (
( 0 [,] A
)  i^i  Prime )  e. 
Fin )
87 fzfid 12124 . . . . 5  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  e.  Fin )
88 simprl 756 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  ->  p  e.  ( (
0 [,] A )  i^i  Prime ) )
8948, 88sseldi 3440 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  ->  p  e.  Prime )
90 elfznn 11768 . . . . . . . . . . 11  |-  ( k  e.  ( 1 ... ( |_ `  (
( log `  A
)  /  ( log `  p ) ) ) )  ->  k  e.  NN )
9190ad2antll 727 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
k  e.  NN )
92 vmappw 23771 . . . . . . . . . 10  |-  ( ( p  e.  Prime  /\  k  e.  NN )  ->  (Λ `  ( p ^ k
) )  =  ( log `  p ) )
9389, 91, 92syl2anc 659 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
(Λ `  ( p ^
k ) )  =  ( log `  p
) )
9452adantrr 715 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  ->  p  e.  NN )
9594nnrpd 11302 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  ->  p  e.  RR+ )
9695relogcld 23302 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
( log `  p
)  e.  RR )
9793, 96eqeltrd 2490 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
(Λ `  ( p ^
k ) )  e.  RR )
9891nnnn0d 10893 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
k  e.  NN0 )
99 nnexpcl 12223 . . . . . . . . . . . 12  |-  ( ( p  e.  NN  /\  k  e.  NN0 )  -> 
( p ^ k
)  e.  NN )
10094, 98, 99syl2anc 659 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
( p ^ k
)  e.  NN )
101100nnrpd 11302 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
( p ^ k
)  e.  RR+ )
102101relogcld 23302 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
( log `  (
p ^ k ) )  e.  RR )
103 ifcl 3927 . . . . . . . . 9  |-  ( ( ( log `  (
p ^ k ) )  e.  RR  /\  0  e.  RR )  ->  if ( ( p ^ k )  e. 
Prime ,  ( log `  ( p ^ k
) ) ,  0 )  e.  RR )
104102, 18, 103sylancl 660 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  ->  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 )  e.  RR )
10597, 104resubcld 10028 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  e.  RR )
106105, 100nndivred 10625 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
( ( (Λ `  (
p ^ k ) )  -  if ( ( p ^ k
)  e.  Prime ,  ( log `  ( p ^ k ) ) ,  0 ) )  /  ( p ^
k ) )  e.  RR )
107106anassrs 646 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  /  (
p ^ k ) )  e.  RR )
10887, 107fsumrecl 13705 . . . 4  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k
) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) )  /  ( p ^ k ) )  e.  RR )
10986, 108fsumrecl 13705 . . 3  |-  ( A  e.  ZZ  ->  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime )
sum_ k  e.  ( 1 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  /  (
p ^ k ) )  e.  RR )
11052nnrpd 11302 . . . . . 6  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  RR+ )
111110relogcld 23302 . . . . 5  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  p
)  e.  RR )
112 uz2m1nn 11201 . . . . . . 7  |-  ( p  e.  ( ZZ>= `  2
)  ->  ( p  -  1 )  e.  NN )
11374, 112syl 17 . . . . . 6  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  -  1 )  e.  NN )
11452, 113nnmulcld 10624 . . . . 5  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  x.  (
p  -  1 ) )  e.  NN )
115111, 114nndivred 10625 . . . 4  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  p
)  /  ( p  x.  ( p  - 
1 ) ) )  e.  RR )
11686, 115fsumrecl 13705 . . 3  |-  ( A  e.  ZZ  ->  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime ) ( ( log `  p
)  /  ( p  x.  ( p  - 
1 ) ) )  e.  RR )
117 2re 10646 . . . 4  |-  2  e.  RR
118117a1i 11 . . 3  |-  ( A  e.  ZZ  ->  2  e.  RR )
11918a1i 11 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
0  e.  RR )
12052nngt0d 10620 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
0  <  p )
121119, 53, 54, 120, 66ltletrd 9776 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
0  <  A )
12254, 121elrpd 11301 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  A  e.  RR+ )
123122relogcld 23302 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  A
)  e.  RR )
124 prmgt1 14445 . . . . . . . . . . . 12  |-  ( p  e.  Prime  ->  1  < 
p )
12550, 124syl 17 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
1  <  p )
12653, 125rplogcld 23308 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  p
)  e.  RR+ )
127123, 126rerpdivcld 11331 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  A
)  /  ( log `  p ) )  e.  RR )
128126rpcnd 11306 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  p
)  e.  CC )
129128mulid2d 9644 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  x.  ( log `  p ) )  =  ( log `  p
) )
130110, 122logled 23306 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  <_  A  <->  ( log `  p )  <_  ( log `  A
) ) )
13166, 130mpbid 210 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  p
)  <_  ( log `  A ) )
132129, 131eqbrtrd 4415 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  x.  ( log `  p ) )  <_  ( log `  A
) )
133 1re 9625 . . . . . . . . . . . 12  |-  1  e.  RR
134133a1i 11 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
1  e.  RR )
135134, 123, 126lemuldivd 11349 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  x.  ( log `  p
) )  <_  ( log `  A )  <->  1  <_  ( ( log `  A
)  /  ( log `  p ) ) ) )
136132, 135mpbid 210 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
1  <_  ( ( log `  A )  / 
( log `  p
) ) )
137 flge1nn 11993 . . . . . . . . 9  |-  ( ( ( ( log `  A
)  /  ( log `  p ) )  e.  RR  /\  1  <_ 
( ( log `  A
)  /  ( log `  p ) ) )  ->  ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  e.  NN )
138127, 136, 137syl2anc 659 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  e.  NN )
139 nnuz 11162 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
140138, 139syl6eleq 2500 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  e.  ( ZZ>= `  1
) )
141106recnd 9652 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
( ( (Λ `  (
p ^ k ) )  -  if ( ( p ^ k
)  e.  Prime ,  ( log `  ( p ^ k ) ) ,  0 ) )  /  ( p ^
k ) )  e.  CC )
142141anassrs 646 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  /  (
p ^ k ) )  e.  CC )
143 oveq2 6286 . . . . . . . . . 10  |-  ( k  =  1  ->  (
p ^ k )  =  ( p ^
1 ) )
144143fveq2d 5853 . . . . . . . . 9  |-  ( k  =  1  ->  (Λ `  ( p ^ k
) )  =  (Λ `  ( p ^ 1 ) ) )
145143eleq1d 2471 . . . . . . . . . 10  |-  ( k  =  1  ->  (
( p ^ k
)  e.  Prime  <->  ( p ^ 1 )  e. 
Prime ) )
146143fveq2d 5853 . . . . . . . . . 10  |-  ( k  =  1  ->  ( log `  ( p ^
k ) )  =  ( log `  (
p ^ 1 ) ) )
147145, 146ifbieq1d 3908 . . . . . . . . 9  |-  ( k  =  1  ->  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 )  =  if ( ( p ^ 1 )  e.  Prime ,  ( log `  ( p ^ 1 ) ) ,  0 ) )
148144, 147oveq12d 6296 . . . . . . . 8  |-  ( k  =  1  ->  (
(Λ `  ( p ^
k ) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) )  =  ( (Λ `  ( p ^ 1 ) )  -  if ( ( p ^
1 )  e.  Prime ,  ( log `  (
p ^ 1 ) ) ,  0 ) ) )
149148, 143oveq12d 6296 . . . . . . 7  |-  ( k  =  1  ->  (
( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  /  (
p ^ k ) )  =  ( ( (Λ `  ( p ^ 1 ) )  -  if ( ( p ^ 1 )  e.  Prime ,  ( log `  ( p ^ 1 ) ) ,  0 ) )  /  (
p ^ 1 ) ) )
150140, 142, 149fsum1p 13719 . . . . . 6  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k
) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) )  /  ( p ^ k ) )  =  ( ( ( (Λ `  ( p ^ 1 ) )  -  if ( ( p ^ 1 )  e.  Prime ,  ( log `  ( p ^ 1 ) ) ,  0 ) )  /  (
p ^ 1 ) )  +  sum_ k  e.  ( ( 1  +  1 ) ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  /  (
p ^ k ) ) ) )
15152nncnd 10592 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  CC )
152151exp1d 12349 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p ^ 1 )  =  p )
153152fveq2d 5853 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
(Λ `  ( p ^
1 ) )  =  (Λ `  p )
)
154 vmaprm 23772 . . . . . . . . . . . . 13  |-  ( p  e.  Prime  ->  (Λ `  p
)  =  ( log `  p ) )
15550, 154syl 17 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
(Λ `  p )  =  ( log `  p
) )
156153, 155eqtrd 2443 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
(Λ `  ( p ^
1 ) )  =  ( log `  p
) )
157152, 50eqeltrd 2490 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p ^ 1 )  e.  Prime )
158157iftrued 3893 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  if ( ( p ^
1 )  e.  Prime ,  ( log `  (
p ^ 1 ) ) ,  0 )  =  ( log `  (
p ^ 1 ) ) )
159152fveq2d 5853 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  (
p ^ 1 ) )  =  ( log `  p ) )
160158, 159eqtrd 2443 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  if ( ( p ^
1 )  e.  Prime ,  ( log `  (
p ^ 1 ) ) ,  0 )  =  ( log `  p
) )
161156, 160oveq12d 6296 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( (Λ `  ( p ^ 1 ) )  -  if ( ( p ^ 1 )  e.  Prime ,  ( log `  ( p ^ 1 ) ) ,  0 ) )  =  ( ( log `  p
)  -  ( log `  p ) ) )
162128subidd 9955 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  p
)  -  ( log `  p ) )  =  0 )
163161, 162eqtrd 2443 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( (Λ `  ( p ^ 1 ) )  -  if ( ( p ^ 1 )  e.  Prime ,  ( log `  ( p ^ 1 ) ) ,  0 ) )  =  0 )
164163, 152oveq12d 6296 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( (Λ `  (
p ^ 1 ) )  -  if ( ( p ^ 1 )  e.  Prime ,  ( log `  ( p ^ 1 ) ) ,  0 ) )  /  ( p ^
1 ) )  =  ( 0  /  p
) )
165110rpcnne0d 11313 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  e.  CC  /\  p  =/=  0 ) )
166 div0 10276 . . . . . . . . 9  |-  ( ( p  e.  CC  /\  p  =/=  0 )  -> 
( 0  /  p
)  =  0 )
167165, 166syl 17 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 0  /  p
)  =  0 )
168164, 167eqtrd 2443 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( (Λ `  (
p ^ 1 ) )  -  if ( ( p ^ 1 )  e.  Prime ,  ( log `  ( p ^ 1 ) ) ,  0 ) )  /  ( p ^
1 ) )  =  0 )
169 1p1e2 10690 . . . . . . . . . 10  |-  ( 1  +  1 )  =  2
170169oveq1i 6288 . . . . . . . . 9  |-  ( ( 1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) )  =  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) )
171170a1i 11 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  +  1 ) ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  =  ( 2 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) )
172 elfzuz 11738 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 2 ... ( |_ `  (
( log `  A
)  /  ( log `  p ) ) ) )  ->  k  e.  ( ZZ>= `  2 )
)
173 eluz2nn 11165 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ZZ>= `  2
)  ->  k  e.  NN )
174172, 173syl 17 . . . . . . . . . . . . 13  |-  ( k  e.  ( 2 ... ( |_ `  (
( log `  A
)  /  ( log `  p ) ) ) )  ->  k  e.  NN )
175174, 170eleq2s 2510 . . . . . . . . . . . 12  |-  ( k  e.  ( ( 1  +  1 ) ... ( |_ `  (
( log `  A
)  /  ( log `  p ) ) ) )  ->  k  e.  NN )
17650, 175, 92syl2an 475 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( (
1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (Λ `  ( p ^ k
) )  =  ( log `  p ) )
17752adantr 463 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( (
1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  p  e.  NN )
178 nnq 11240 . . . . . . . . . . . . . 14  |-  ( p  e.  NN  ->  p  e.  QQ )
179177, 178syl 17 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( (
1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  p  e.  QQ )
180172, 170eleq2s 2510 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ( 1  +  1 ) ... ( |_ `  (
( log `  A
)  /  ( log `  p ) ) ) )  ->  k  e.  ( ZZ>= `  2 )
)
181180adantl 464 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( (
1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  k  e.  ( ZZ>= `  2 )
)
182 expnprm 14630 . . . . . . . . . . . . 13  |-  ( ( p  e.  QQ  /\  k  e.  ( ZZ>= ` 
2 ) )  ->  -.  ( p ^ k
)  e.  Prime )
183179, 181, 182syl2anc 659 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( (
1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  -.  ( p ^ k
)  e.  Prime )
184183iffalsed 3896 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( (
1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 )  =  0 )
185176, 184oveq12d 6296 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( (
1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
(Λ `  ( p ^
k ) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) )  =  ( ( log `  p )  -  0 ) )
186128subid1d 9956 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  p
)  -  0 )  =  ( log `  p
) )
187186adantr 463 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( (
1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
( log `  p
)  -  0 )  =  ( log `  p
) )
188185, 187eqtrd 2443 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( (
1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
(Λ `  ( p ^
k ) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) )  =  ( log `  p ) )
189188oveq1d 6293 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( (
1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  /  (
p ^ k ) )  =  ( ( log `  p )  /  ( p ^
k ) ) )
190171, 189sumeq12dv 13677 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( ( 1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k
) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) )  /  ( p ^ k ) )  =  sum_ k  e.  ( 2 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( log `  p )  /  ( p ^
k ) ) )
191168, 190oveq12d 6296 . . . . . 6  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( ( (Λ `  ( p ^ 1 ) )  -  if ( ( p ^
1 )  e.  Prime ,  ( log `  (
p ^ 1 ) ) ,  0 ) )  /  ( p ^ 1 ) )  +  sum_ k  e.  ( ( 1  +  1 ) ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  /  (
p ^ k ) ) )  =  ( 0  +  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( log `  p )  /  ( p ^
k ) ) ) )
192 fzfid 12124 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 2 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  e.  Fin )
193111adantr 463 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  ( log `  p
)  e.  RR )
194 nnnn0 10843 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  k  e.  NN0 )
19552, 194, 99syl2an 475 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  ( p ^ k
)  e.  NN )
196193, 195nndivred 10625 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  ( ( log `  p
)  /  ( p ^ k ) )  e.  RR )
197174, 196sylan2 472 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
( log `  p
)  /  ( p ^ k ) )  e.  RR )
198192, 197fsumrecl 13705 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( log `  p )  /  (
p ^ k ) )  e.  RR )
199198recnd 9652 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( log `  p )  /  (
p ^ k ) )  e.  CC )
200199addid2d 9815 . . . . . 6  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 0  +  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( log `  p )  /  (
p ^ k ) ) )  =  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( log `  p )  /  (
p ^ k ) ) )
201150, 191, 2003eqtrd 2447 . . . . 5  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k
) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) )  /  ( p ^ k ) )  =  sum_ k  e.  ( 2 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( log `  p )  /  ( p ^
k ) ) )
202110rpreccld 11314 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  /  p
)  e.  RR+ )
203127flcld 11972 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  e.  ZZ )
204203peano2zd 11011 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 )  e.  ZZ )
205202, 204rpexpcld 12377 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  /  p ) ^ (
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  +  1 ) )  e.  RR+ )
206205rpge0d 11308 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
0  <_  ( (
1  /  p ) ^ ( ( |_
`  ( ( log `  A )  /  ( log `  p ) ) )  +  1 ) ) )
20752nnrecred 10622 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  /  p
)  e.  RR )
208207resqcld 12380 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  /  p ) ^ 2 )  e.  RR )
209138peano2nnd 10593 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 )  e.  NN )
210209nnnn0d 10893 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 )  e. 
NN0 )
211207, 210reexpcld 12371 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  /  p ) ^ (
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  +  1 ) )  e.  RR )
212208, 211subge02d 10184 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 0  <_  (
( 1  /  p
) ^ ( ( |_ `  ( ( log `  A )  /  ( log `  p
) ) )  +  1 ) )  <->  ( (
( 1  /  p
) ^ 2 )  -  ( ( 1  /  p ) ^
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) )  <_  ( (
1  /  p ) ^ 2 ) ) )
213206, 212mpbid 210 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( ( 1  /  p ) ^
2 )  -  (
( 1  /  p
) ^ ( ( |_ `  ( ( log `  A )  /  ( log `  p
) ) )  +  1 ) ) )  <_  ( ( 1  /  p ) ^
2 ) )
214113nnrpd 11302 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  -  1 )  e.  RR+ )
215214rpcnne0d 11313 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( p  - 
1 )  e.  CC  /\  ( p  -  1 )  =/=  0 ) )
216202rpcnd 11306 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  /  p
)  e.  CC )
217 dmdcan 10295 . . . . . . . . . . 11  |-  ( ( ( ( p  - 
1 )  e.  CC  /\  ( p  -  1 )  =/=  0 )  /\  ( p  e.  CC  /\  p  =/=  0 )  /\  (
1  /  p )  e.  CC )  -> 
( ( ( p  -  1 )  /  p )  x.  (
( 1  /  p
)  /  ( p  -  1 ) ) )  =  ( ( 1  /  p )  /  p ) )
218215, 165, 216, 217syl3anc 1230 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( ( p  -  1 )  /  p )  x.  (
( 1  /  p
)  /  ( p  -  1 ) ) )  =  ( ( 1  /  p )  /  p ) )
219134recnd 9652 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
1  e.  CC )
220 divsubdir 10281 . . . . . . . . . . . . 13  |-  ( ( p  e.  CC  /\  1  e.  CC  /\  (
p  e.  CC  /\  p  =/=  0 ) )  ->  ( ( p  -  1 )  /  p )  =  ( ( p  /  p
)  -  ( 1  /  p ) ) )
221151, 219, 165, 220syl3anc 1230 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( p  - 
1 )  /  p
)  =  ( ( p  /  p )  -  ( 1  /  p ) ) )
222 divid 10275 . . . . . . . . . . . . . 14  |-  ( ( p  e.  CC  /\  p  =/=  0 )  -> 
( p  /  p
)  =  1 )
223165, 222syl 17 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  /  p
)  =  1 )
224223oveq1d 6293 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( p  /  p )  -  (
1  /  p ) )  =  ( 1  -  ( 1  /  p ) ) )
225221, 224eqtrd 2443 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( p  - 
1 )  /  p
)  =  ( 1  -  ( 1  /  p ) ) )
226 divdiv1 10296 . . . . . . . . . . . 12  |-  ( ( 1  e.  CC  /\  ( p  e.  CC  /\  p  =/=  0 )  /\  ( ( p  -  1 )  e.  CC  /\  ( p  -  1 )  =/=  0 ) )  -> 
( ( 1  /  p )  /  (
p  -  1 ) )  =  ( 1  /  ( p  x.  ( p  -  1 ) ) ) )
227219, 165, 215, 226syl3anc 1230 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  /  p )  /  (
p  -  1 ) )  =  ( 1  /  ( p  x.  ( p  -  1 ) ) ) )
228225, 227oveq12d 6296 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( ( p  -  1 )  /  p )  x.  (
( 1  /  p
)  /  ( p  -  1 ) ) )  =  ( ( 1  -  ( 1  /  p ) )  x.  ( 1  / 
( p  x.  (
p  -  1 ) ) ) ) )
22952nnne0d 10621 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  =/=  0 )
230216, 151, 229divrecd 10364 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  /  p )  /  p
)  =  ( ( 1  /  p )  x.  ( 1  /  p ) ) )
231216sqvald 12351 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  /  p ) ^ 2 )  =  ( ( 1  /  p )  x.  ( 1  /  p ) ) )
232230, 231eqtr4d 2446 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  /  p )  /  p
)  =  ( ( 1  /  p ) ^ 2 ) )
233218, 228, 2323eqtr3d 2451 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  -  ( 1  /  p
) )  x.  (
1  /  ( p  x.  ( p  - 
1 ) ) ) )  =  ( ( 1  /  p ) ^ 2 ) )
234213, 233breqtrrd 4421 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( ( 1  /  p ) ^
2 )  -  (
( 1  /  p
) ^ ( ( |_ `  ( ( log `  A )  /  ( log `  p
) ) )  +  1 ) ) )  <_  ( ( 1  -  ( 1  /  p ) )  x.  ( 1  /  (
p  x.  ( p  -  1 ) ) ) ) )
235208, 211resubcld 10028 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( ( 1  /  p ) ^
2 )  -  (
( 1  /  p
) ^ ( ( |_ `  ( ( log `  A )  /  ( log `  p
) ) )  +  1 ) ) )  e.  RR )
236114nnrecred 10622 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  /  (
p  x.  ( p  -  1 ) ) )  e.  RR )
237 resubcl 9919 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  ( 1  /  p
)  e.  RR )  ->  ( 1  -  ( 1  /  p
) )  e.  RR )
238133, 207, 237sylancr 661 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  -  (
1  /  p ) )  e.  RR )
239 recgt1 10481 . . . . . . . . . . . 12  |-  ( ( p  e.  RR  /\  0  <  p )  -> 
( 1  <  p  <->  ( 1  /  p )  <  1 ) )
24053, 120, 239syl2anc 659 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  <  p  <->  ( 1  /  p )  <  1 ) )
241125, 240mpbid 210 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  /  p
)  <  1 )
242 posdif 10086 . . . . . . . . . . 11  |-  ( ( ( 1  /  p
)  e.  RR  /\  1  e.  RR )  ->  ( ( 1  /  p )  <  1  <->  0  <  ( 1  -  ( 1  /  p
) ) ) )
243207, 133, 242sylancl 660 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  /  p )  <  1  <->  0  <  ( 1  -  ( 1  /  p
) ) ) )
244241, 243mpbid 210 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
0  <  ( 1  -  ( 1  /  p ) ) )
245 ledivmul 10459 . . . . . . . . 9  |-  ( ( ( ( ( 1  /  p ) ^
2 )  -  (
( 1  /  p
) ^ ( ( |_ `  ( ( log `  A )  /  ( log `  p
) ) )  +  1 ) ) )  e.  RR  /\  (
1  /  ( p  x.  ( p  - 
1 ) ) )  e.  RR  /\  (
( 1  -  (
1  /  p ) )  e.  RR  /\  0  <  ( 1  -  ( 1  /  p
) ) ) )  ->  ( ( ( ( ( 1  /  p ) ^ 2 )  -  ( ( 1  /  p ) ^ ( ( |_
`  ( ( log `  A )  /  ( log `  p ) ) )  +  1 ) ) )  /  (
1  -  ( 1  /  p ) ) )  <_  ( 1  /  ( p  x.  ( p  -  1 ) ) )  <->  ( (
( 1  /  p
) ^ 2 )  -  ( ( 1  /  p ) ^
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) )  <_  ( (
1  -  ( 1  /  p ) )  x.  ( 1  / 
( p  x.  (
p  -  1 ) ) ) ) ) )
246235, 236, 238, 244, 245syl112anc 1234 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( ( ( ( 1  /  p
) ^ 2 )  -  ( ( 1  /  p ) ^
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) )  /  ( 1  -  ( 1  /  p ) ) )  <_  ( 1  / 
( p  x.  (
p  -  1 ) ) )  <->  ( (
( 1  /  p
) ^ 2 )  -  ( ( 1  /  p ) ^
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) )  <_  ( (
1  -  ( 1  /  p ) )  x.  ( 1  / 
( p  x.  (
p  -  1 ) ) ) ) ) )
247234, 246mpbird 232 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( ( ( 1  /  p ) ^ 2 )  -  ( ( 1  /  p ) ^ (
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) )  /  ( 1  -  ( 1  /  p ) ) )  <_  ( 1  / 
( p  x.  (
p  -  1 ) ) ) )
248238, 244elrpd 11301 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  -  (
1  /  p ) )  e.  RR+ )
249235, 248rerpdivcld 11331 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( ( ( 1  /  p ) ^ 2 )  -  ( ( 1  /  p ) ^ (
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) )  /  ( 1  -  ( 1  /  p ) ) )  e.  RR )
250249, 236, 126lemul2d 11344 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( ( ( ( 1  /  p
) ^ 2 )  -  ( ( 1  /  p ) ^
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) )  /  ( 1  -  ( 1  /  p ) ) )  <_  ( 1  / 
( p  x.  (
p  -  1 ) ) )  <->  ( ( log `  p )  x.  ( ( ( ( 1  /  p ) ^ 2 )  -  ( ( 1  /  p ) ^ (
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) )  /  ( 1  -  ( 1  /  p ) ) ) )  <_  ( ( log `  p )  x.  ( 1  /  (
p  x.  ( p  -  1 ) ) ) ) ) )
251247, 250mpbid 210 . . . . . 6  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  p
)  x.  ( ( ( ( 1  /  p ) ^ 2 )  -  ( ( 1  /  p ) ^ ( ( |_
`  ( ( log `  A )  /  ( log `  p ) ) )  +  1 ) ) )  /  (
1  -  ( 1  /  p ) ) ) )  <_  (
( log `  p
)  x.  ( 1  /  ( p  x.  ( p  -  1 ) ) ) ) )
252128adantr 463 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  ( log `  p
)  e.  CC )
253195nncnd 10592 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  ( p ^ k
)  e.  CC )
254195nnne0d 10621 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  ( p ^ k
)  =/=  0 )
255252, 253, 254divrecd 10364 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  ( ( log `  p
)  /  ( p ^ k ) )  =  ( ( log `  p )  x.  (
1  /  ( p ^ k ) ) ) )
256151adantr 463 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  p  e.  CC )
25752adantr 463 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  p  e.  NN )
258257nnne0d 10621 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  p  =/=  0 )
259 nnz 10927 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  k  e.  ZZ )
260259adantl 464 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  k  e.  ZZ )
261256, 258, 260exprecd 12362 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  ( ( 1  /  p ) ^ k
)  =  ( 1  /  ( p ^
k ) ) )
262261oveq2d 6294 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  ( ( log `  p
)  x.  ( ( 1  /  p ) ^ k ) )  =  ( ( log `  p )  x.  (
1  /  ( p ^ k ) ) ) )
263255, 262eqtr4d 2446 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  ( ( log `  p
)  /  ( p ^ k ) )  =  ( ( log `  p )  x.  (
( 1  /  p
) ^ k ) ) )
264174, 263sylan2 472 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
( log `  p
)  /  ( p ^ k ) )  =  ( ( log `  p )  x.  (
( 1  /  p
) ^ k ) ) )
265264sumeq2dv 13674 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( log `  p )  /  (
p ^ k ) )  =  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( log `  p )  x.  ( ( 1  /  p ) ^
k ) ) )
266174nnnn0d 10893 . . . . . . . . 9  |-  ( k  e.  ( 2 ... ( |_ `  (
( log `  A
)  /  ( log `  p ) ) ) )  ->  k  e.  NN0 )
267 expcl 12228 . . . . . . . . 9  |-  ( ( ( 1  /  p
)  e.  CC  /\  k  e.  NN0 )  -> 
( ( 1  /  p ) ^ k
)  e.  CC )
268216, 266, 267syl2an 475 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
( 1  /  p
) ^ k )  e.  CC )
269192, 128, 268fsummulc2 13750 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  p
)  x.  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( 1  /  p ) ^ k ) )  =  sum_ k  e.  ( 2 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( log `  p )  x.  ( ( 1  /  p ) ^
k ) ) )
270 fzval3 11921 . . . . . . . . . . 11  |-  ( ( |_ `  ( ( log `  A )  /  ( log `  p
) ) )  e.  ZZ  ->  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) )  =  ( 2..^ ( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) )
271203, 270syl 17 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 2 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  =  ( 2..^ ( ( |_
`  ( ( log `  A )  /  ( log `  p ) ) )  +  1 ) ) )
272271sumeq1d 13672 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( 1  /  p ) ^
k )  =  sum_ k  e.  ( 2..^ ( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) ( ( 1  /  p ) ^ k
) )
273207, 241ltned 9753 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  /  p
)  =/=  1 )
274 2nn0 10853 . . . . . . . . . . 11  |-  2  e.  NN0
275274a1i 11 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
2  e.  NN0 )
276 eluzp1p1 11152 . . . . . . . . . . . 12  |-  ( ( |_ `  ( ( log `  A )  /  ( log `  p
) ) )  e.  ( ZZ>= `  1 )  ->  ( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 )  e.  ( ZZ>= `  ( 1  +  1 ) ) )
277140, 276syl 17 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 )  e.  ( ZZ>= `  ( 1  +  1 ) ) )
278 df-2 10635 . . . . . . . . . . . 12  |-  2  =  ( 1  +  1 )
279278fveq2i 5852 . . . . . . . . . . 11  |-  ( ZZ>= ` 
2 )  =  (
ZZ>= `  ( 1  +  1 ) )
280277, 279syl6eleqr 2501 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 )  e.  ( ZZ>= `  2 )
)
281216, 273, 275, 280geoserg 13829 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 2..^ ( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) ( ( 1  /  p ) ^ k
)  =  ( ( ( ( 1  /  p ) ^ 2 )  -  ( ( 1  /  p ) ^ ( ( |_
`  ( ( log `  A )  /  ( log `  p ) ) )  +  1 ) ) )  /  (
1  -  ( 1  /  p ) ) ) )
282272, 281eqtrd 2443 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( 1  /  p ) ^
k )  =  ( ( ( ( 1  /  p ) ^
2 )  -  (
( 1  /  p
) ^ ( ( |_ `  ( ( log `  A )  /  ( log `  p
) ) )  +  1 ) ) )  /  ( 1  -  ( 1  /  p
) ) ) )
283282oveq2d 6294 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  p
)  x.  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( 1  /  p ) ^ k ) )  =  ( ( log `  p )  x.  (
( ( ( 1  /  p ) ^
2 )  -  (
( 1  /  p
) ^ ( ( |_ `  ( ( log `  A )  /  ( log `  p
) ) )  +  1 ) ) )  /  ( 1  -  ( 1  /  p
) ) ) ) )
284265, 269, 2833eqtr2d 2449 . . . . . 6  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( log `  p )  /  (
p ^ k ) )  =  ( ( log `  p )  x.  ( ( ( ( 1  /  p
) ^ 2 )  -  ( ( 1  /  p ) ^
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) )  /  ( 1  -  ( 1  /  p ) ) ) ) )
285114nncnd 10592 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  x.  (
p  -  1 ) )  e.  CC )
286114nnne0d 10621 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  x.  (
p  -  1 ) )  =/=  0 )
287128, 285, 286divrecd 10364 . . . . . 6  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  p
)  /  ( p  x.  ( p  - 
1 ) ) )  =  ( ( log `  p )  x.  (
1  /  ( p  x.  ( p  - 
1 ) ) ) ) )
288251, 284, 2873brtr4d 4425 . . . . 5  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( log `  p )  /  (
p ^ k ) )  <_  ( ( log `  p )  / 
( p  x.  (
p  -  1 ) ) ) )
289201, 288eqbrtrd 4415 . . . 4  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k
) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) )  /  ( p ^ k ) )  <_  ( ( log `  p )  /  (
p  x.  ( p  -  1 ) ) ) )
29086, 108, 115, 289fsumle 13764 . . 3  |-  ( A  e.  ZZ  ->  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime )
sum_ k  e.  ( 1 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  /  (
p ^ k ) )  <_  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime ) ( ( log `  p
)  /  ( p  x.  ( p  - 
1 ) ) ) )
291 elfzuz 11738 . . . . . . . . . . 11  |-  ( p  e.  ( 2 ... ( ( abs `  A
)  +  1 ) )  ->  p  e.  ( ZZ>= `  2 )
)
292 eluz2nn 11165 . . . . . . . . . . 11  |-  ( p  e.  ( ZZ>= `  2
)  ->  p  e.  NN )
293291, 292syl 17 . . . . . . . . . 10  |-  ( p  e.  ( 2 ... ( ( abs `  A
)  +  1 ) )  ->  p  e.  NN )
294293adantl 464 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  ->  p  e.  NN )
295294nnred 10591 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  ->  p  e.  RR )
296291adantl 464 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  ->  p  e.  ( ZZ>= ` 
2 ) )
297 eluz2b2 11199 . . . . . . . . . 10  |-  ( p  e.  ( ZZ>= `  2
)  <->  ( p  e.  NN  /\  1  < 
p ) )
298297simprbi 462 . . . . . . . . 9  |-  ( p  e.  ( ZZ>= `  2
)  ->  1  <  p )
299296, 298syl 17 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  -> 
1  <  p )
300295, 299rplogcld 23308 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  -> 
( log `  p
)  e.  RR+ )
301296, 112syl 17 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  -> 
( p  -  1 )  e.  NN )
302294, 301nnmulcld 10624 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  -> 
( p  x.  (
p  -  1 ) )  e.  NN )
303302nnrpd 11302 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  -> 
( p  x.  (
p  -  1 ) )  e.  RR+ )
304300, 303rpdivcld 11321 . . . . . 6  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  -> 
( ( log `  p
)  /  ( p  x.  ( p  - 
1 ) ) )  e.  RR+ )
305304rpred 11304 . . . . 5  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  -> 
( ( log `  p
)  /  ( p  x.  ( p  - 
1 ) ) )  e.  RR )
30647, 305fsumrecl 13705 . . . 4  |-  ( A  e.  ZZ  ->  sum_ p  e.  ( 2 ... (
( abs `  A
)  +  1 ) ) ( ( log `  p )  /  (
p  x.  ( p  -  1 ) ) )  e.  RR )
307304rpge0d 11308 . . . . 5  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  -> 
0  <_  ( ( log `  p )  / 
( p  x.  (
p  -  1 ) ) ) )
30847, 305, 307, 84fsumless 13761 . . . 4  |-  ( A  e.  ZZ  ->  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime ) ( ( log `  p
)  /  ( p  x.  ( p  - 
1 ) ) )  <_  sum_ p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) ( ( log `  p
)  /  ( p  x.  ( p  - 
1 ) ) ) )
309 rplogsumlem1 24050 . . . . 5  |-  ( ( ( abs `  A
)  +  1 )  e.  NN  ->  sum_ p  e.  ( 2 ... (
( abs `  A
)  +  1 ) ) ( ( log `  p )  /  (
p  x.  ( p  -  1 ) ) )  <_  2 )
31077, 309syl 17 . . . 4  |-  ( A  e.  ZZ  ->  sum_ p  e.  ( 2 ... (
( abs `  A
)  +  1 ) ) ( ( log `  p )  /  (
p  x.  ( p  -  1 ) ) )  <_  2 )
311116, 306, 118, 308, 310letrd 9773 . . 3  |-  ( A  e.  ZZ  ->  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime ) ( ( log `  p
)  /  ( p  x.  ( p  - 
1 ) ) )  <_  2 )
312109, 116, 118, 290, 311letrd 9773 . 2  |-  ( A  e.  ZZ  ->  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime )
sum_ k  e.  ( 1 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  /  (
p ^ k ) )  <_  2 )
31346, 312eqbrtrd 4415 1  |-  ( A  e.  ZZ  ->  sum_ n  e.  ( 1 ... A
) ( ( (Λ `  n )  -  if ( n  e.  Prime ,  ( log `  n
) ,  0 ) )  /  n )  <_  2 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842    =/= wne 2598    i^i cin 3413    C_ wss 3414   ifcif 3885   class class class wbr 4395   ` cfv 5569  (class class class)co 6278   Fincfn 7554   CCcc 9520   RRcr 9521   0cc0 9522   1c1 9523    + caddc 9525    x. cmul 9527    < clt 9658    <_ cle 9659    - cmin 9841    / cdiv 10247   NNcn 10576   2c2 10626   NN0cn0 10836   ZZcz 10905   ZZ>=cuz 11127   QQcq 11227   RR+crp 11265   [,]cicc 11585   ...cfz 11726  ..^cfzo 11854   |_cfl 11964   ^cexp 12210   abscabs 13216   sum_csu 13657   Primecprime 14426   logclog 23234  Λcvma 23746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-inf2 8091  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599  ax-pre-sup 9600  ax-addf 9601  ax-mulf 9602
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-fal 1411  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-int 4228  df-iun 4273  df-iin 4274  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-se 4783  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-isom 5578  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-of 6521  df-om 6684  df-1st 6784  df-2nd 6785  df-supp 6903  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-1o 7167  df-2o 7168  df-oadd 7171  df-er 7348  df-map 7459  df-pm 7460  df-ixp 7508  df-en 7555  df-dom 7556  df-sdom 7557  df-fin 7558  df-fsupp 7864  df-fi 7905  df-sup 7935  df-oi 7969  df-card 8352  df-cda 8580  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-div 10248  df-nn 10577  df-2 10635  df-3 10636  df-4 10637  df-5 10638  df-6 10639  df-7 10640  df-8 10641  df-9 10642  df-10 10643  df-n0 10837  df-z 10906  df-dec 11020  df-uz 11128  df-q 11228  df-rp 11266  df-xneg 11371  df-xadd 11372  df-xmul 11373  df-ioo 11586  df-ioc 11587  df-ico 11588  df-icc 11589  df-fz 11727  df-fzo 11855  df-fl 11966  df-mod 12035  df-seq 12152  df-exp 12211  df-fac 12398  df-bc 12425  df-hash 12453  df-shft 13049  df-cj 13081  df-re 13082  df-im 13083  df-sqrt 13217  df-abs 13218  df-limsup 13443  df-clim 13460  df-rlim 13461  df-sum 13658  df-ef 14012  df-sin 14014  df-cos 14015  df-tan 14016  df-pi 14017  df-dvds 14196  df-gcd 14354  df-prm 14427  df-pc 14570  df-struct 14843  df-ndx 14844  df-slot 14845  df-base 14846  df-sets 14847  df-ress 14848  df-plusg 14922  df-mulr 14923  df-starv 14924  df-sca 14925  df-vsca 14926  df-ip 14927  df-tset 14928  df-ple 14929  df-ds 14931  df-unif 14932  df-hom 14933  df-cco 14934  df-rest 15037  df-topn 15038  df-0g 15056  df-gsum 15057  df-topgen 15058  df-pt 15059  df-prds 15062  df-xrs 15116  df-qtop 15121  df-imas 15122  df-xps 15124  df-mre 15200  df-mrc 15201  df-acs 15203  df-mgm 16196  df-sgrp 16235  df-mnd 16245  df-submnd 16291  df-mulg 16384  df-cntz 16679  df-cmn 17124  df-psmet 18731  df-xmet 18732  df-met 18733  df-bl 18734  df-mopn 18735  df-fbas 18736  df-fg 18737  df-cnfld 18741  df-top 19691  df-bases 19693  df-topon 19694  df-topsp 19695  df-cld 19812  df-ntr 19813  df-cls 19814  df-nei 19892  df-lp 19930  df-perf 19931  df-cn 20021  df-cnp 20022  df-haus 20109  df-cmp 20180  df-tx 20355  df-hmeo 20548  df-fil 20639  df-fm 20731  df-flim 20732  df-flf 20733  df-xms 21115  df-ms 21116  df-tms 21117  df-cncf 21674  df-limc 22562  df-dv 22563  df-log 23236  df-cxp 23237  df-vma 23752
This theorem is referenced by:  rplogsum  24093
  Copyright terms: Public domain W3C validator