MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rplogsumlem2 Structured version   Visualization version   Unicode version

Theorem rplogsumlem2 24402
Description: Lemma for rplogsum 24444. Equation 9.2.14 of [Shapiro], p. 331. (Contributed by Mario Carneiro, 2-May-2016.)
Assertion
Ref Expression
rplogsumlem2  |-  ( A  e.  ZZ  ->  sum_ n  e.  ( 1 ... A
) ( ( (Λ `  n )  -  if ( n  e.  Prime ,  ( log `  n
) ,  0 ) )  /  n )  <_  2 )
Distinct variable group:    A, n

Proof of Theorem rplogsumlem2
Dummy variables  k  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 flid 12077 . . . . 5  |-  ( A  e.  ZZ  ->  ( |_ `  A )  =  A )
21oveq2d 6324 . . . 4  |-  ( A  e.  ZZ  ->  (
1 ... ( |_ `  A ) )  =  ( 1 ... A
) )
32sumeq1d 13844 . . 3  |-  ( A  e.  ZZ  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( ( (Λ `  n
)  -  if ( n  e.  Prime ,  ( log `  n ) ,  0 ) )  /  n )  = 
sum_ n  e.  (
1 ... A ) ( ( (Λ `  n
)  -  if ( n  e.  Prime ,  ( log `  n ) ,  0 ) )  /  n ) )
4 fveq2 5879 . . . . . 6  |-  ( n  =  ( p ^
k )  ->  (Λ `  n )  =  (Λ `  ( p ^ k
) ) )
5 eleq1 2537 . . . . . . 7  |-  ( n  =  ( p ^
k )  ->  (
n  e.  Prime  <->  ( p ^ k )  e. 
Prime ) )
6 fveq2 5879 . . . . . . 7  |-  ( n  =  ( p ^
k )  ->  ( log `  n )  =  ( log `  (
p ^ k ) ) )
75, 6ifbieq1d 3895 . . . . . 6  |-  ( n  =  ( p ^
k )  ->  if ( n  e.  Prime ,  ( log `  n
) ,  0 )  =  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )
84, 7oveq12d 6326 . . . . 5  |-  ( n  =  ( p ^
k )  ->  (
(Λ `  n )  -  if ( n  e.  Prime ,  ( log `  n
) ,  0 ) )  =  ( (Λ `  ( p ^ k
) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) ) )
9 id 22 . . . . 5  |-  ( n  =  ( p ^
k )  ->  n  =  ( p ^
k ) )
108, 9oveq12d 6326 . . . 4  |-  ( n  =  ( p ^
k )  ->  (
( (Λ `  n )  -  if ( n  e. 
Prime ,  ( log `  n ) ,  0 ) )  /  n
)  =  ( ( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  /  (
p ^ k ) ) )
11 zre 10965 . . . 4  |-  ( A  e.  ZZ  ->  A  e.  RR )
12 elfznn 11854 . . . . . . . . 9  |-  ( n  e.  ( 1 ... ( |_ `  A
) )  ->  n  e.  NN )
1312adantl 473 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  NN )
14 vmacl 24124 . . . . . . . 8  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
1513, 14syl 17 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  (Λ `  n )  e.  RR )
1613nnrpd 11362 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  RR+ )
1716relogcld 23651 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( log `  n
)  e.  RR )
18 0re 9661 . . . . . . . 8  |-  0  e.  RR
19 ifcl 3914 . . . . . . . 8  |-  ( ( ( log `  n
)  e.  RR  /\  0  e.  RR )  ->  if ( n  e. 
Prime ,  ( log `  n ) ,  0 )  e.  RR )
2017, 18, 19sylancl 675 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  if ( n  e.  Prime ,  ( log `  n ) ,  0 )  e.  RR )
2115, 20resubcld 10068 . . . . . 6  |-  ( ( A  e.  ZZ  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (Λ `  n
)  -  if ( n  e.  Prime ,  ( log `  n ) ,  0 ) )  e.  RR )
2221, 13nndivred 10680 . . . . 5  |-  ( ( A  e.  ZZ  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( (Λ `  n )  -  if ( n  e.  Prime ,  ( log `  n
) ,  0 ) )  /  n )  e.  RR )
2322recnd 9687 . . . 4  |-  ( ( A  e.  ZZ  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( (Λ `  n )  -  if ( n  e.  Prime ,  ( log `  n
) ,  0 ) )  /  n )  e.  CC )
24 simprr 774 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  -> 
(Λ `  n )  =  0 )
25 vmaprm 24123 . . . . . . . . . . . . 13  |-  ( n  e.  Prime  ->  (Λ `  n
)  =  ( log `  n ) )
26 prmnn 14704 . . . . . . . . . . . . . . 15  |-  ( n  e.  Prime  ->  n  e.  NN )
2726nnred 10646 . . . . . . . . . . . . . 14  |-  ( n  e.  Prime  ->  n  e.  RR )
28 prmgt1 14722 . . . . . . . . . . . . . 14  |-  ( n  e.  Prime  ->  1  < 
n )
2927, 28rplogcld 23657 . . . . . . . . . . . . 13  |-  ( n  e.  Prime  ->  ( log `  n )  e.  RR+ )
3025, 29eqeltrd 2549 . . . . . . . . . . . 12  |-  ( n  e.  Prime  ->  (Λ `  n
)  e.  RR+ )
3130rpne0d 11369 . . . . . . . . . . 11  |-  ( n  e.  Prime  ->  (Λ `  n
)  =/=  0 )
3231necon2bi 2673 . . . . . . . . . 10  |-  ( (Λ `  n )  =  0  ->  -.  n  e.  Prime )
3332ad2antll 743 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  ->  -.  n  e.  Prime )
3433iffalsed 3883 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  ->  if ( n  e.  Prime ,  ( log `  n
) ,  0 )  =  0 )
3524, 34oveq12d 6326 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  -> 
( (Λ `  n )  -  if ( n  e. 
Prime ,  ( log `  n ) ,  0 ) )  =  ( 0  -  0 ) )
36 0m0e0 10741 . . . . . . 7  |-  ( 0  -  0 )  =  0
3735, 36syl6eq 2521 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  -> 
( (Λ `  n )  -  if ( n  e. 
Prime ,  ( log `  n ) ,  0 ) )  =  0 )
3837oveq1d 6323 . . . . 5  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  -> 
( ( (Λ `  n
)  -  if ( n  e.  Prime ,  ( log `  n ) ,  0 ) )  /  n )  =  ( 0  /  n
) )
3912ad2antrl 742 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  ->  n  e.  NN )
4039nnrpd 11362 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  ->  n  e.  RR+ )
4140rpcnne0d 11373 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  -> 
( n  e.  CC  /\  n  =/=  0 ) )
42 div0 10320 . . . . . 6  |-  ( ( n  e.  CC  /\  n  =/=  0 )  -> 
( 0  /  n
)  =  0 )
4341, 42syl 17 . . . . 5  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  -> 
( 0  /  n
)  =  0 )
4438, 43eqtrd 2505 . . . 4  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  -> 
( ( (Λ `  n
)  -  if ( n  e.  Prime ,  ( log `  n ) ,  0 ) )  /  n )  =  0 )
4510, 11, 23, 44fsumvma2 24221 . . 3  |-  ( A  e.  ZZ  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( ( (Λ `  n
)  -  if ( n  e.  Prime ,  ( log `  n ) ,  0 ) )  /  n )  = 
sum_ p  e.  (
( 0 [,] A
)  i^i  Prime ) sum_ k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k
) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) )  /  ( p ^ k ) ) )
463, 45eqtr3d 2507 . 2  |-  ( A  e.  ZZ  ->  sum_ n  e.  ( 1 ... A
) ( ( (Λ `  n )  -  if ( n  e.  Prime ,  ( log `  n
) ,  0 ) )  /  n )  =  sum_ p  e.  ( ( 0 [,] A
)  i^i  Prime ) sum_ k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k
) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) )  /  ( p ^ k ) ) )
47 fzfid 12224 . . . . 5  |-  ( A  e.  ZZ  ->  (
2 ... ( ( abs `  A )  +  1 ) )  e.  Fin )
48 inss2 3644 . . . . . . . . . . . 12  |-  ( ( 0 [,] A )  i^i  Prime )  C_  Prime
49 simpr 468 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  ( (
0 [,] A )  i^i  Prime ) )
5048, 49sseldi 3416 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  Prime )
51 prmnn 14704 . . . . . . . . . . 11  |-  ( p  e.  Prime  ->  p  e.  NN )
5250, 51syl 17 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  NN )
5352nnred 10646 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  RR )
5411adantr 472 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  A  e.  RR )
55 zcn 10966 . . . . . . . . . . . 12  |-  ( A  e.  ZZ  ->  A  e.  CC )
5655abscld 13575 . . . . . . . . . . 11  |-  ( A  e.  ZZ  ->  ( abs `  A )  e.  RR )
57 peano2re 9824 . . . . . . . . . . 11  |-  ( ( abs `  A )  e.  RR  ->  (
( abs `  A
)  +  1 )  e.  RR )
5856, 57syl 17 . . . . . . . . . 10  |-  ( A  e.  ZZ  ->  (
( abs `  A
)  +  1 )  e.  RR )
5958adantr 472 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( abs `  A
)  +  1 )  e.  RR )
60 inss1 3643 . . . . . . . . . . . . 13  |-  ( ( 0 [,] A )  i^i  Prime )  C_  (
0 [,] A )
6160sseli 3414 . . . . . . . . . . . 12  |-  ( p  e.  ( ( 0 [,] A )  i^i 
Prime )  ->  p  e.  ( 0 [,] A
) )
62 elicc2 11724 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( p  e.  ( 0 [,] A )  <-> 
( p  e.  RR  /\  0  <_  p  /\  p  <_  A ) ) )
6318, 11, 62sylancr 676 . . . . . . . . . . . 12  |-  ( A  e.  ZZ  ->  (
p  e.  ( 0 [,] A )  <->  ( p  e.  RR  /\  0  <_  p  /\  p  <_  A
) ) )
6461, 63syl5ib 227 . . . . . . . . . . 11  |-  ( A  e.  ZZ  ->  (
p  e.  ( ( 0 [,] A )  i^i  Prime )  ->  (
p  e.  RR  /\  0  <_  p  /\  p  <_  A ) ) )
6564imp 436 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  e.  RR  /\  0  <_  p  /\  p  <_  A ) )
6665simp3d 1044 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  <_  A )
6755adantr 472 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  A  e.  CC )
6867abscld 13575 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( abs `  A
)  e.  RR )
6954leabsd 13553 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  A  <_  ( abs `  A
) )
7068lep1d 10560 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( abs `  A
)  <_  ( ( abs `  A )  +  1 ) )
7154, 68, 59, 69, 70letrd 9809 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  A  <_  ( ( abs `  A )  +  1 ) )
7253, 54, 59, 66, 71letrd 9809 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  <_  ( ( abs `  A )  +  1 ) )
73 prmuz2 14721 . . . . . . . . . 10  |-  ( p  e.  Prime  ->  p  e.  ( ZZ>= `  2 )
)
7450, 73syl 17 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  ( ZZ>= ` 
2 ) )
75 nn0abscl 13452 . . . . . . . . . . . 12  |-  ( A  e.  ZZ  ->  ( abs `  A )  e. 
NN0 )
76 nn0p1nn 10933 . . . . . . . . . . . 12  |-  ( ( abs `  A )  e.  NN0  ->  ( ( abs `  A )  +  1 )  e.  NN )
7775, 76syl 17 . . . . . . . . . . 11  |-  ( A  e.  ZZ  ->  (
( abs `  A
)  +  1 )  e.  NN )
7877nnzd 11062 . . . . . . . . . 10  |-  ( A  e.  ZZ  ->  (
( abs `  A
)  +  1 )  e.  ZZ )
7978adantr 472 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( abs `  A
)  +  1 )  e.  ZZ )
80 elfz5 11818 . . . . . . . . 9  |-  ( ( p  e.  ( ZZ>= ` 
2 )  /\  (
( abs `  A
)  +  1 )  e.  ZZ )  -> 
( p  e.  ( 2 ... ( ( abs `  A )  +  1 ) )  <-> 
p  <_  ( ( abs `  A )  +  1 ) ) )
8174, 79, 80syl2anc 673 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  e.  ( 2 ... ( ( abs `  A )  +  1 ) )  <-> 
p  <_  ( ( abs `  A )  +  1 ) ) )
8272, 81mpbird 240 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )
8382ex 441 . . . . . 6  |-  ( A  e.  ZZ  ->  (
p  e.  ( ( 0 [,] A )  i^i  Prime )  ->  p  e.  ( 2 ... (
( abs `  A
)  +  1 ) ) ) )
8483ssrdv 3424 . . . . 5  |-  ( A  e.  ZZ  ->  (
( 0 [,] A
)  i^i  Prime )  C_  ( 2 ... (
( abs `  A
)  +  1 ) ) )
85 ssfi 7810 . . . . 5  |-  ( ( ( 2 ... (
( abs `  A
)  +  1 ) )  e.  Fin  /\  ( ( 0 [,] A )  i^i  Prime ) 
C_  ( 2 ... ( ( abs `  A
)  +  1 ) ) )  ->  (
( 0 [,] A
)  i^i  Prime )  e. 
Fin )
8647, 84, 85syl2anc 673 . . . 4  |-  ( A  e.  ZZ  ->  (
( 0 [,] A
)  i^i  Prime )  e. 
Fin )
87 fzfid 12224 . . . . 5  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  e.  Fin )
88 simprl 772 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  ->  p  e.  ( (
0 [,] A )  i^i  Prime ) )
8948, 88sseldi 3416 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  ->  p  e.  Prime )
90 elfznn 11854 . . . . . . . . . . 11  |-  ( k  e.  ( 1 ... ( |_ `  (
( log `  A
)  /  ( log `  p ) ) ) )  ->  k  e.  NN )
9190ad2antll 743 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
k  e.  NN )
92 vmappw 24122 . . . . . . . . . 10  |-  ( ( p  e.  Prime  /\  k  e.  NN )  ->  (Λ `  ( p ^ k
) )  =  ( log `  p ) )
9389, 91, 92syl2anc 673 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
(Λ `  ( p ^
k ) )  =  ( log `  p
) )
9452adantrr 731 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  ->  p  e.  NN )
9594nnrpd 11362 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  ->  p  e.  RR+ )
9695relogcld 23651 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
( log `  p
)  e.  RR )
9793, 96eqeltrd 2549 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
(Λ `  ( p ^
k ) )  e.  RR )
9891nnnn0d 10949 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
k  e.  NN0 )
99 nnexpcl 12323 . . . . . . . . . . . 12  |-  ( ( p  e.  NN  /\  k  e.  NN0 )  -> 
( p ^ k
)  e.  NN )
10094, 98, 99syl2anc 673 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
( p ^ k
)  e.  NN )
101100nnrpd 11362 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
( p ^ k
)  e.  RR+ )
102101relogcld 23651 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
( log `  (
p ^ k ) )  e.  RR )
103 ifcl 3914 . . . . . . . . 9  |-  ( ( ( log `  (
p ^ k ) )  e.  RR  /\  0  e.  RR )  ->  if ( ( p ^ k )  e. 
Prime ,  ( log `  ( p ^ k
) ) ,  0 )  e.  RR )
104102, 18, 103sylancl 675 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  ->  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 )  e.  RR )
10597, 104resubcld 10068 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  e.  RR )
106105, 100nndivred 10680 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
( ( (Λ `  (
p ^ k ) )  -  if ( ( p ^ k
)  e.  Prime ,  ( log `  ( p ^ k ) ) ,  0 ) )  /  ( p ^
k ) )  e.  RR )
107106anassrs 660 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  /  (
p ^ k ) )  e.  RR )
10887, 107fsumrecl 13877 . . . 4  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k
) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) )  /  ( p ^ k ) )  e.  RR )
10986, 108fsumrecl 13877 . . 3  |-  ( A  e.  ZZ  ->  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime )
sum_ k  e.  ( 1 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  /  (
p ^ k ) )  e.  RR )
11052nnrpd 11362 . . . . . 6  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  RR+ )
111110relogcld 23651 . . . . 5  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  p
)  e.  RR )
112 uz2m1nn 11256 . . . . . . 7  |-  ( p  e.  ( ZZ>= `  2
)  ->  ( p  -  1 )  e.  NN )
11374, 112syl 17 . . . . . 6  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  -  1 )  e.  NN )
11452, 113nnmulcld 10679 . . . . 5  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  x.  (
p  -  1 ) )  e.  NN )
115111, 114nndivred 10680 . . . 4  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  p
)  /  ( p  x.  ( p  - 
1 ) ) )  e.  RR )
11686, 115fsumrecl 13877 . . 3  |-  ( A  e.  ZZ  ->  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime ) ( ( log `  p
)  /  ( p  x.  ( p  - 
1 ) ) )  e.  RR )
117 2re 10701 . . . 4  |-  2  e.  RR
118117a1i 11 . . 3  |-  ( A  e.  ZZ  ->  2  e.  RR )
11918a1i 11 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
0  e.  RR )
12052nngt0d 10675 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
0  <  p )
121119, 53, 54, 120, 66ltletrd 9812 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
0  <  A )
12254, 121elrpd 11361 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  A  e.  RR+ )
123122relogcld 23651 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  A
)  e.  RR )
124 prmgt1 14722 . . . . . . . . . . . 12  |-  ( p  e.  Prime  ->  1  < 
p )
12550, 124syl 17 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
1  <  p )
12653, 125rplogcld 23657 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  p
)  e.  RR+ )
127123, 126rerpdivcld 11392 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  A
)  /  ( log `  p ) )  e.  RR )
128126rpcnd 11366 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  p
)  e.  CC )
129128mulid2d 9679 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  x.  ( log `  p ) )  =  ( log `  p
) )
130110, 122logled 23655 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  <_  A  <->  ( log `  p )  <_  ( log `  A
) ) )
13166, 130mpbid 215 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  p
)  <_  ( log `  A ) )
132129, 131eqbrtrd 4416 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  x.  ( log `  p ) )  <_  ( log `  A
) )
133 1re 9660 . . . . . . . . . . . 12  |-  1  e.  RR
134133a1i 11 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
1  e.  RR )
135134, 123, 126lemuldivd 11410 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  x.  ( log `  p
) )  <_  ( log `  A )  <->  1  <_  ( ( log `  A
)  /  ( log `  p ) ) ) )
136132, 135mpbid 215 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
1  <_  ( ( log `  A )  / 
( log `  p
) ) )
137 flge1nn 12088 . . . . . . . . 9  |-  ( ( ( ( log `  A
)  /  ( log `  p ) )  e.  RR  /\  1  <_ 
( ( log `  A
)  /  ( log `  p ) ) )  ->  ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  e.  NN )
138127, 136, 137syl2anc 673 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  e.  NN )
139 nnuz 11218 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
140138, 139syl6eleq 2559 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  e.  ( ZZ>= `  1
) )
141106recnd 9687 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
( ( (Λ `  (
p ^ k ) )  -  if ( ( p ^ k
)  e.  Prime ,  ( log `  ( p ^ k ) ) ,  0 ) )  /  ( p ^
k ) )  e.  CC )
142141anassrs 660 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  /  (
p ^ k ) )  e.  CC )
143 oveq2 6316 . . . . . . . . . 10  |-  ( k  =  1  ->  (
p ^ k )  =  ( p ^
1 ) )
144143fveq2d 5883 . . . . . . . . 9  |-  ( k  =  1  ->  (Λ `  ( p ^ k
) )  =  (Λ `  ( p ^ 1 ) ) )
145143eleq1d 2533 . . . . . . . . . 10  |-  ( k  =  1  ->  (
( p ^ k
)  e.  Prime  <->  ( p ^ 1 )  e. 
Prime ) )
146143fveq2d 5883 . . . . . . . . . 10  |-  ( k  =  1  ->  ( log `  ( p ^
k ) )  =  ( log `  (
p ^ 1 ) ) )
147145, 146ifbieq1d 3895 . . . . . . . . 9  |-  ( k  =  1  ->  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 )  =  if ( ( p ^ 1 )  e.  Prime ,  ( log `  ( p ^ 1 ) ) ,  0 ) )
148144, 147oveq12d 6326 . . . . . . . 8  |-  ( k  =  1  ->  (
(Λ `  ( p ^
k ) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) )  =  ( (Λ `  ( p ^ 1 ) )  -  if ( ( p ^
1 )  e.  Prime ,  ( log `  (
p ^ 1 ) ) ,  0 ) ) )
149148, 143oveq12d 6326 . . . . . . 7  |-  ( k  =  1  ->  (
( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  /  (
p ^ k ) )  =  ( ( (Λ `  ( p ^ 1 ) )  -  if ( ( p ^ 1 )  e.  Prime ,  ( log `  ( p ^ 1 ) ) ,  0 ) )  /  (
p ^ 1 ) ) )
150140, 142, 149fsum1p 13891 . . . . . 6  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k
) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) )  /  ( p ^ k ) )  =  ( ( ( (Λ `  ( p ^ 1 ) )  -  if ( ( p ^ 1 )  e.  Prime ,  ( log `  ( p ^ 1 ) ) ,  0 ) )  /  (
p ^ 1 ) )  +  sum_ k  e.  ( ( 1  +  1 ) ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  /  (
p ^ k ) ) ) )
15152nncnd 10647 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  CC )
152151exp1d 12449 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p ^ 1 )  =  p )
153152fveq2d 5883 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
(Λ `  ( p ^
1 ) )  =  (Λ `  p )
)
154 vmaprm 24123 . . . . . . . . . . . . 13  |-  ( p  e.  Prime  ->  (Λ `  p
)  =  ( log `  p ) )
15550, 154syl 17 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
(Λ `  p )  =  ( log `  p
) )
156153, 155eqtrd 2505 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
(Λ `  ( p ^
1 ) )  =  ( log `  p
) )
157152, 50eqeltrd 2549 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p ^ 1 )  e.  Prime )
158157iftrued 3880 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  if ( ( p ^
1 )  e.  Prime ,  ( log `  (
p ^ 1 ) ) ,  0 )  =  ( log `  (
p ^ 1 ) ) )
159152fveq2d 5883 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  (
p ^ 1 ) )  =  ( log `  p ) )
160158, 159eqtrd 2505 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  if ( ( p ^
1 )  e.  Prime ,  ( log `  (
p ^ 1 ) ) ,  0 )  =  ( log `  p
) )
161156, 160oveq12d 6326 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( (Λ `  ( p ^ 1 ) )  -  if ( ( p ^ 1 )  e.  Prime ,  ( log `  ( p ^ 1 ) ) ,  0 ) )  =  ( ( log `  p
)  -  ( log `  p ) ) )
162128subidd 9993 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  p
)  -  ( log `  p ) )  =  0 )
163161, 162eqtrd 2505 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( (Λ `  ( p ^ 1 ) )  -  if ( ( p ^ 1 )  e.  Prime ,  ( log `  ( p ^ 1 ) ) ,  0 ) )  =  0 )
164163, 152oveq12d 6326 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( (Λ `  (
p ^ 1 ) )  -  if ( ( p ^ 1 )  e.  Prime ,  ( log `  ( p ^ 1 ) ) ,  0 ) )  /  ( p ^
1 ) )  =  ( 0  /  p
) )
165110rpcnne0d 11373 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  e.  CC  /\  p  =/=  0 ) )
166 div0 10320 . . . . . . . . 9  |-  ( ( p  e.  CC  /\  p  =/=  0 )  -> 
( 0  /  p
)  =  0 )
167165, 166syl 17 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 0  /  p
)  =  0 )
168164, 167eqtrd 2505 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( (Λ `  (
p ^ 1 ) )  -  if ( ( p ^ 1 )  e.  Prime ,  ( log `  ( p ^ 1 ) ) ,  0 ) )  /  ( p ^
1 ) )  =  0 )
169 1p1e2 10745 . . . . . . . . . 10  |-  ( 1  +  1 )  =  2
170169oveq1i 6318 . . . . . . . . 9  |-  ( ( 1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) )  =  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) )
171170a1i 11 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  +  1 ) ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  =  ( 2 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) )
172 elfzuz 11822 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 2 ... ( |_ `  (
( log `  A
)  /  ( log `  p ) ) ) )  ->  k  e.  ( ZZ>= `  2 )
)
173 eluz2nn 11221 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ZZ>= `  2
)  ->  k  e.  NN )
174172, 173syl 17 . . . . . . . . . . . . 13  |-  ( k  e.  ( 2 ... ( |_ `  (
( log `  A
)  /  ( log `  p ) ) ) )  ->  k  e.  NN )
175174, 170eleq2s 2567 . . . . . . . . . . . 12  |-  ( k  e.  ( ( 1  +  1 ) ... ( |_ `  (
( log `  A
)  /  ( log `  p ) ) ) )  ->  k  e.  NN )
17650, 175, 92syl2an 485 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( (
1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (Λ `  ( p ^ k
) )  =  ( log `  p ) )
17752adantr 472 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( (
1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  p  e.  NN )
178 nnq 11300 . . . . . . . . . . . . . 14  |-  ( p  e.  NN  ->  p  e.  QQ )
179177, 178syl 17 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( (
1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  p  e.  QQ )
180172, 170eleq2s 2567 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ( 1  +  1 ) ... ( |_ `  (
( log `  A
)  /  ( log `  p ) ) ) )  ->  k  e.  ( ZZ>= `  2 )
)
181180adantl 473 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( (
1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  k  e.  ( ZZ>= `  2 )
)
182 expnprm 14926 . . . . . . . . . . . . 13  |-  ( ( p  e.  QQ  /\  k  e.  ( ZZ>= ` 
2 ) )  ->  -.  ( p ^ k
)  e.  Prime )
183179, 181, 182syl2anc 673 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( (
1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  -.  ( p ^ k
)  e.  Prime )
184183iffalsed 3883 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( (
1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 )  =  0 )
185176, 184oveq12d 6326 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( (
1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
(Λ `  ( p ^
k ) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) )  =  ( ( log `  p )  -  0 ) )
186128subid1d 9994 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  p
)  -  0 )  =  ( log `  p
) )
187186adantr 472 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( (
1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
( log `  p
)  -  0 )  =  ( log `  p
) )
188185, 187eqtrd 2505 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( (
1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
(Λ `  ( p ^
k ) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) )  =  ( log `  p ) )
189188oveq1d 6323 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( (
1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  /  (
p ^ k ) )  =  ( ( log `  p )  /  ( p ^
k ) ) )
190171, 189sumeq12dv 13849 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( ( 1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k
) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) )  /  ( p ^ k ) )  =  sum_ k  e.  ( 2 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( log `  p )  /  ( p ^
k ) ) )
191168, 190oveq12d 6326 . . . . . 6  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( ( (Λ `  ( p ^ 1 ) )  -  if ( ( p ^
1 )  e.  Prime ,  ( log `  (
p ^ 1 ) ) ,  0 ) )  /  ( p ^ 1 ) )  +  sum_ k  e.  ( ( 1  +  1 ) ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  /  (
p ^ k ) ) )  =  ( 0  +  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( log `  p )  /  ( p ^
k ) ) ) )
192 fzfid 12224 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 2 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  e.  Fin )
193111adantr 472 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  ( log `  p
)  e.  RR )
194 nnnn0 10900 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  k  e.  NN0 )
19552, 194, 99syl2an 485 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  ( p ^ k
)  e.  NN )
196193, 195nndivred 10680 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  ( ( log `  p
)  /  ( p ^ k ) )  e.  RR )
197174, 196sylan2 482 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
( log `  p
)  /  ( p ^ k ) )  e.  RR )
198192, 197fsumrecl 13877 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( log `  p )  /  (
p ^ k ) )  e.  RR )
199198recnd 9687 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( log `  p )  /  (
p ^ k ) )  e.  CC )
200199addid2d 9852 . . . . . 6  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 0  +  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( log `  p )  /  (
p ^ k ) ) )  =  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( log `  p )  /  (
p ^ k ) ) )
201150, 191, 2003eqtrd 2509 . . . . 5  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k
) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) )  /  ( p ^ k ) )  =  sum_ k  e.  ( 2 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( log `  p )  /  ( p ^
k ) ) )
202110rpreccld 11374 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  /  p
)  e.  RR+ )
203127flcld 12067 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  e.  ZZ )
204203peano2zd 11066 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 )  e.  ZZ )
205202, 204rpexpcld 12477 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  /  p ) ^ (
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  +  1 ) )  e.  RR+ )
206205rpge0d 11368 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
0  <_  ( (
1  /  p ) ^ ( ( |_
`  ( ( log `  A )  /  ( log `  p ) ) )  +  1 ) ) )
20752nnrecred 10677 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  /  p
)  e.  RR )
208207resqcld 12480 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  /  p ) ^ 2 )  e.  RR )
209138peano2nnd 10648 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 )  e.  NN )
210209nnnn0d 10949 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 )  e. 
NN0 )
211207, 210reexpcld 12471 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  /  p ) ^ (
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  +  1 ) )  e.  RR )
212208, 211subge02d 10226 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 0  <_  (
( 1  /  p
) ^ ( ( |_ `  ( ( log `  A )  /  ( log `  p
) ) )  +  1 ) )  <->  ( (
( 1  /  p
) ^ 2 )  -  ( ( 1  /  p ) ^
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) )  <_  ( (
1  /  p ) ^ 2 ) ) )
213206, 212mpbid 215 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( ( 1  /  p ) ^
2 )  -  (
( 1  /  p
) ^ ( ( |_ `  ( ( log `  A )  /  ( log `  p
) ) )  +  1 ) ) )  <_  ( ( 1  /  p ) ^
2 ) )
214113nnrpd 11362 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  -  1 )  e.  RR+ )
215214rpcnne0d 11373 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( p  - 
1 )  e.  CC  /\  ( p  -  1 )  =/=  0 ) )
216202rpcnd 11366 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  /  p
)  e.  CC )
217 dmdcan 10339 . . . . . . . . . . 11  |-  ( ( ( ( p  - 
1 )  e.  CC  /\  ( p  -  1 )  =/=  0 )  /\  ( p  e.  CC  /\  p  =/=  0 )  /\  (
1  /  p )  e.  CC )  -> 
( ( ( p  -  1 )  /  p )  x.  (
( 1  /  p
)  /  ( p  -  1 ) ) )  =  ( ( 1  /  p )  /  p ) )
218215, 165, 216, 217syl3anc 1292 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( ( p  -  1 )  /  p )  x.  (
( 1  /  p
)  /  ( p  -  1 ) ) )  =  ( ( 1  /  p )  /  p ) )
219134recnd 9687 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
1  e.  CC )
220 divsubdir 10325 . . . . . . . . . . . . 13  |-  ( ( p  e.  CC  /\  1  e.  CC  /\  (
p  e.  CC  /\  p  =/=  0 ) )  ->  ( ( p  -  1 )  /  p )  =  ( ( p  /  p
)  -  ( 1  /  p ) ) )
221151, 219, 165, 220syl3anc 1292 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( p  - 
1 )  /  p
)  =  ( ( p  /  p )  -  ( 1  /  p ) ) )
222 divid 10319 . . . . . . . . . . . . . 14  |-  ( ( p  e.  CC  /\  p  =/=  0 )  -> 
( p  /  p
)  =  1 )
223165, 222syl 17 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  /  p
)  =  1 )
224223oveq1d 6323 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( p  /  p )  -  (
1  /  p ) )  =  ( 1  -  ( 1  /  p ) ) )
225221, 224eqtrd 2505 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( p  - 
1 )  /  p
)  =  ( 1  -  ( 1  /  p ) ) )
226 divdiv1 10340 . . . . . . . . . . . 12  |-  ( ( 1  e.  CC  /\  ( p  e.  CC  /\  p  =/=  0 )  /\  ( ( p  -  1 )  e.  CC  /\  ( p  -  1 )  =/=  0 ) )  -> 
( ( 1  /  p )  /  (
p  -  1 ) )  =  ( 1  /  ( p  x.  ( p  -  1 ) ) ) )
227219, 165, 215, 226syl3anc 1292 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  /  p )  /  (
p  -  1 ) )  =  ( 1  /  ( p  x.  ( p  -  1 ) ) ) )
228225, 227oveq12d 6326 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( ( p  -  1 )  /  p )  x.  (
( 1  /  p
)  /  ( p  -  1 ) ) )  =  ( ( 1  -  ( 1  /  p ) )  x.  ( 1  / 
( p  x.  (
p  -  1 ) ) ) ) )
22952nnne0d 10676 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  =/=  0 )
230216, 151, 229divrecd 10408 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  /  p )  /  p
)  =  ( ( 1  /  p )  x.  ( 1  /  p ) ) )
231216sqvald 12451 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  /  p ) ^ 2 )  =  ( ( 1  /  p )  x.  ( 1  /  p ) ) )
232230, 231eqtr4d 2508 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  /  p )  /  p
)  =  ( ( 1  /  p ) ^ 2 ) )
233218, 228, 2323eqtr3d 2513 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  -  ( 1  /  p
) )  x.  (
1  /  ( p  x.  ( p  - 
1 ) ) ) )  =  ( ( 1  /  p ) ^ 2 ) )
234213, 233breqtrrd 4422 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( ( 1  /  p ) ^
2 )  -  (
( 1  /  p
) ^ ( ( |_ `  ( ( log `  A )  /  ( log `  p
) ) )  +  1 ) ) )  <_  ( ( 1  -  ( 1  /  p ) )  x.  ( 1  /  (
p  x.  ( p  -  1 ) ) ) ) )
235208, 211resubcld 10068 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( ( 1  /  p ) ^
2 )  -  (
( 1  /  p
) ^ ( ( |_ `  ( ( log `  A )  /  ( log `  p
) ) )  +  1 ) ) )  e.  RR )
236114nnrecred 10677 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  /  (
p  x.  ( p  -  1 ) ) )  e.  RR )
237 resubcl 9958 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  ( 1  /  p
)  e.  RR )  ->  ( 1  -  ( 1  /  p
) )  e.  RR )
238133, 207, 237sylancr 676 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  -  (
1  /  p ) )  e.  RR )
239 recgt1 10524 . . . . . . . . . . . 12  |-  ( ( p  e.  RR  /\  0  <  p )  -> 
( 1  <  p  <->  ( 1  /  p )  <  1 ) )
24053, 120, 239syl2anc 673 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  <  p  <->  ( 1  /  p )  <  1 ) )
241125, 240mpbid 215 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  /  p
)  <  1 )
242 posdif 10128 . . . . . . . . . . 11  |-  ( ( ( 1  /  p
)  e.  RR  /\  1  e.  RR )  ->  ( ( 1  /  p )  <  1  <->  0  <  ( 1  -  ( 1  /  p
) ) ) )
243207, 133, 242sylancl 675 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  /  p )  <  1  <->  0  <  ( 1  -  ( 1  /  p
) ) ) )
244241, 243mpbid 215 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
0  <  ( 1  -  ( 1  /  p ) ) )
245 ledivmul 10503 . . . . . . . . 9  |-  ( ( ( ( ( 1  /  p ) ^
2 )  -  (
( 1  /  p
) ^ ( ( |_ `  ( ( log `  A )  /  ( log `  p
) ) )  +  1 ) ) )  e.  RR  /\  (
1  /  ( p  x.  ( p  - 
1 ) ) )  e.  RR  /\  (
( 1  -  (
1  /  p ) )  e.  RR  /\  0  <  ( 1  -  ( 1  /  p
) ) ) )  ->  ( ( ( ( ( 1  /  p ) ^ 2 )  -  ( ( 1  /  p ) ^ ( ( |_
`  ( ( log `  A )  /  ( log `  p ) ) )  +  1 ) ) )  /  (
1  -  ( 1  /  p ) ) )  <_  ( 1  /  ( p  x.  ( p  -  1 ) ) )  <->  ( (
( 1  /  p
) ^ 2 )  -  ( ( 1  /  p ) ^
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) )  <_  ( (
1  -  ( 1  /  p ) )  x.  ( 1  / 
( p  x.  (
p  -  1 ) ) ) ) ) )
246235, 236, 238, 244, 245syl112anc 1296 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( ( ( ( 1  /  p
) ^ 2 )  -  ( ( 1  /  p ) ^
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) )  /  ( 1  -  ( 1  /  p ) ) )  <_  ( 1  / 
( p  x.  (
p  -  1 ) ) )  <->  ( (
( 1  /  p
) ^ 2 )  -  ( ( 1  /  p ) ^
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) )  <_  ( (
1  -  ( 1  /  p ) )  x.  ( 1  / 
( p  x.  (
p  -  1 ) ) ) ) ) )
247234, 246mpbird 240 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( ( ( 1  /  p ) ^ 2 )  -  ( ( 1  /  p ) ^ (
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) )  /  ( 1  -  ( 1  /  p ) ) )  <_  ( 1  / 
( p  x.  (
p  -  1 ) ) ) )
248238, 244elrpd 11361 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  -  (
1  /  p ) )  e.  RR+ )
249235, 248rerpdivcld 11392 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( ( ( 1  /  p ) ^ 2 )  -  ( ( 1  /  p ) ^ (
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) )  /  ( 1  -  ( 1  /  p ) ) )  e.  RR )
250249, 236, 126lemul2d 11405 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( ( ( ( 1  /  p
) ^ 2 )  -  ( ( 1  /  p ) ^
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) )  /  ( 1  -  ( 1  /  p ) ) )  <_  ( 1  / 
( p  x.  (
p  -  1 ) ) )  <->  ( ( log `  p )  x.  ( ( ( ( 1  /  p ) ^ 2 )  -  ( ( 1  /  p ) ^ (
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) )  /  ( 1  -  ( 1  /  p ) ) ) )  <_  ( ( log `  p )  x.  ( 1  /  (
p  x.  ( p  -  1 ) ) ) ) ) )
251247, 250mpbid 215 . . . . . 6  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  p
)  x.  ( ( ( ( 1  /  p ) ^ 2 )  -  ( ( 1  /  p ) ^ ( ( |_
`  ( ( log `  A )  /  ( log `  p ) ) )  +  1 ) ) )  /  (
1  -  ( 1  /  p ) ) ) )  <_  (
( log `  p
)  x.  ( 1  /  ( p  x.  ( p  -  1 ) ) ) ) )
252128adantr 472 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  ( log `  p
)  e.  CC )
253195nncnd 10647 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  ( p ^ k
)  e.  CC )
254195nnne0d 10676 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  ( p ^ k
)  =/=  0 )
255252, 253, 254divrecd 10408 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  ( ( log `  p
)  /  ( p ^ k ) )  =  ( ( log `  p )  x.  (
1  /  ( p ^ k ) ) ) )
256151adantr 472 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  p  e.  CC )
25752adantr 472 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  p  e.  NN )
258257nnne0d 10676 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  p  =/=  0 )
259 nnz 10983 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  k  e.  ZZ )
260259adantl 473 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  k  e.  ZZ )
261256, 258, 260exprecd 12462 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  ( ( 1  /  p ) ^ k
)  =  ( 1  /  ( p ^
k ) ) )
262261oveq2d 6324 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  ( ( log `  p
)  x.  ( ( 1  /  p ) ^ k ) )  =  ( ( log `  p )  x.  (
1  /  ( p ^ k ) ) ) )
263255, 262eqtr4d 2508 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  ( ( log `  p
)  /  ( p ^ k ) )  =  ( ( log `  p )  x.  (
( 1  /  p
) ^ k ) ) )
264174, 263sylan2 482 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
( log `  p
)  /  ( p ^ k ) )  =  ( ( log `  p )  x.  (
( 1  /  p
) ^ k ) ) )
265264sumeq2dv 13846 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( log `  p )  /  (
p ^ k ) )  =  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( log `  p )  x.  ( ( 1  /  p ) ^
k ) ) )
266174nnnn0d 10949 . . . . . . . . 9  |-  ( k  e.  ( 2 ... ( |_ `  (
( log `  A
)  /  ( log `  p ) ) ) )  ->  k  e.  NN0 )
267 expcl 12328 . . . . . . . . 9  |-  ( ( ( 1  /  p
)  e.  CC  /\  k  e.  NN0 )  -> 
( ( 1  /  p ) ^ k
)  e.  CC )
268216, 266, 267syl2an 485 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
( 1  /  p
) ^ k )  e.  CC )
269192, 128, 268fsummulc2 13922 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  p
)  x.  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( 1  /  p ) ^ k ) )  =  sum_ k  e.  ( 2 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( log `  p )  x.  ( ( 1  /  p ) ^
k ) ) )
270 fzval3 12012 . . . . . . . . . . 11  |-  ( ( |_ `  ( ( log `  A )  /  ( log `  p
) ) )  e.  ZZ  ->  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) )  =  ( 2..^ ( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) )
271203, 270syl 17 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 2 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  =  ( 2..^ ( ( |_
`  ( ( log `  A )  /  ( log `  p ) ) )  +  1 ) ) )
272271sumeq1d 13844 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( 1  /  p ) ^
k )  =  sum_ k  e.  ( 2..^ ( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) ( ( 1  /  p ) ^ k
) )
273207, 241ltned 9788 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  /  p
)  =/=  1 )
274 2nn0 10910 . . . . . . . . . . 11  |-  2  e.  NN0
275274a1i 11 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
2  e.  NN0 )
276 eluzp1p1 11208 . . . . . . . . . . . 12  |-  ( ( |_ `  ( ( log `  A )  /  ( log `  p
) ) )  e.  ( ZZ>= `  1 )  ->  ( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 )  e.  ( ZZ>= `  ( 1  +  1 ) ) )
277140, 276syl 17 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 )  e.  ( ZZ>= `  ( 1  +  1 ) ) )
278 df-2 10690 . . . . . . . . . . . 12  |-  2  =  ( 1  +  1 )
279278fveq2i 5882 . . . . . . . . . . 11  |-  ( ZZ>= ` 
2 )  =  (
ZZ>= `  ( 1  +  1 ) )
280277, 279syl6eleqr 2560 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 )  e.  ( ZZ>= `  2 )
)
281216, 273, 275, 280geoserg 14001 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 2..^ ( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) ( ( 1  /  p ) ^ k
)  =  ( ( ( ( 1  /  p ) ^ 2 )  -  ( ( 1  /  p ) ^ ( ( |_
`  ( ( log `  A )  /  ( log `  p ) ) )  +  1 ) ) )  /  (
1  -  ( 1  /  p ) ) ) )
282272, 281eqtrd 2505 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( 1  /  p ) ^
k )  =  ( ( ( ( 1  /  p ) ^
2 )  -  (
( 1  /  p
) ^ ( ( |_ `  ( ( log `  A )  /  ( log `  p
) ) )  +  1 ) ) )  /  ( 1  -  ( 1  /  p
) ) ) )
283282oveq2d 6324 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  p
)  x.  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( 1  /  p ) ^ k ) )  =  ( ( log `  p )  x.  (
( ( ( 1  /  p ) ^
2 )  -  (
( 1  /  p
) ^ ( ( |_ `  ( ( log `  A )  /  ( log `  p
) ) )  +  1 ) ) )  /  ( 1  -  ( 1  /  p
) ) ) ) )
284265, 269, 2833eqtr2d 2511 . . . . . 6  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( log `  p )  /  (
p ^ k ) )  =  ( ( log `  p )  x.  ( ( ( ( 1  /  p
) ^ 2 )  -  ( ( 1  /  p ) ^
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) )  /  ( 1  -  ( 1  /  p ) ) ) ) )
285114nncnd 10647 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  x.  (
p  -  1 ) )  e.  CC )
286114nnne0d 10676 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  x.  (
p  -  1 ) )  =/=  0 )
287128, 285, 286divrecd 10408 . . . . . 6  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  p
)  /  ( p  x.  ( p  - 
1 ) ) )  =  ( ( log `  p )  x.  (
1  /  ( p  x.  ( p  - 
1 ) ) ) ) )
288251, 284, 2873brtr4d 4426 . . . . 5  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( log `  p )  /  (
p ^ k ) )  <_  ( ( log `  p )  / 
( p  x.  (
p  -  1 ) ) ) )
289201, 288eqbrtrd 4416 . . . 4  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k
) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) )  /  ( p ^ k ) )  <_  ( ( log `  p )  /  (
p  x.  ( p  -  1 ) ) ) )
29086, 108, 115, 289fsumle 13936 . . 3  |-  ( A  e.  ZZ  ->  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime )
sum_ k  e.  ( 1 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  /  (
p ^ k ) )  <_  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime ) ( ( log `  p
)  /  ( p  x.  ( p  - 
1 ) ) ) )
291 elfzuz 11822 . . . . . . . . . . 11  |-  ( p  e.  ( 2 ... ( ( abs `  A
)  +  1 ) )  ->  p  e.  ( ZZ>= `  2 )
)
292 eluz2nn 11221 . . . . . . . . . . 11  |-  ( p  e.  ( ZZ>= `  2
)  ->  p  e.  NN )
293291, 292syl 17 . . . . . . . . . 10  |-  ( p  e.  ( 2 ... ( ( abs `  A
)  +  1 ) )  ->  p  e.  NN )
294293adantl 473 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  ->  p  e.  NN )
295294nnred 10646 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  ->  p  e.  RR )
296291adantl 473 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  ->  p  e.  ( ZZ>= ` 
2 ) )
297 eluz2b2 11254 . . . . . . . . . 10  |-  ( p  e.  ( ZZ>= `  2
)  <->  ( p  e.  NN  /\  1  < 
p ) )
298297simprbi 471 . . . . . . . . 9  |-  ( p  e.  ( ZZ>= `  2
)  ->  1  <  p )
299296, 298syl 17 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  -> 
1  <  p )
300295, 299rplogcld 23657 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  -> 
( log `  p
)  e.  RR+ )
301296, 112syl 17 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  -> 
( p  -  1 )  e.  NN )
302294, 301nnmulcld 10679 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  -> 
( p  x.  (
p  -  1 ) )  e.  NN )
303302nnrpd 11362 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  -> 
( p  x.  (
p  -  1 ) )  e.  RR+ )
304300, 303rpdivcld 11381 . . . . . 6  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  -> 
( ( log `  p
)  /  ( p  x.  ( p  - 
1 ) ) )  e.  RR+ )
305304rpred 11364 . . . . 5  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  -> 
( ( log `  p
)  /  ( p  x.  ( p  - 
1 ) ) )  e.  RR )
30647, 305fsumrecl 13877 . . . 4  |-  ( A  e.  ZZ  ->  sum_ p  e.  ( 2 ... (
( abs `  A
)  +  1 ) ) ( ( log `  p )  /  (
p  x.  ( p  -  1 ) ) )  e.  RR )
307304rpge0d 11368 . . . . 5  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  -> 
0  <_  ( ( log `  p )  / 
( p  x.  (
p  -  1 ) ) ) )
30847, 305, 307, 84fsumless 13933 . . . 4  |-  ( A  e.  ZZ  ->  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime ) ( ( log `  p
)  /  ( p  x.  ( p  - 
1 ) ) )  <_  sum_ p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) ( ( log `  p
)  /  ( p  x.  ( p  - 
1 ) ) ) )
309 rplogsumlem1 24401 . . . . 5  |-  ( ( ( abs `  A
)  +  1 )  e.  NN  ->  sum_ p  e.  ( 2 ... (
( abs `  A
)  +  1 ) ) ( ( log `  p )  /  (
p  x.  ( p  -  1 ) ) )  <_  2 )
31077, 309syl 17 . . . 4  |-  ( A  e.  ZZ  ->  sum_ p  e.  ( 2 ... (
( abs `  A
)  +  1 ) ) ( ( log `  p )  /  (
p  x.  ( p  -  1 ) ) )  <_  2 )
311116, 306, 118, 308, 310letrd 9809 . . 3  |-  ( A  e.  ZZ  ->  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime ) ( ( log `  p
)  /  ( p  x.  ( p  - 
1 ) ) )  <_  2 )
312109, 116, 118, 290, 311letrd 9809 . 2  |-  ( A  e.  ZZ  ->  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime )
sum_ k  e.  ( 1 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  /  (
p ^ k ) )  <_  2 )
31346, 312eqbrtrd 4416 1  |-  ( A  e.  ZZ  ->  sum_ n  e.  ( 1 ... A
) ( ( (Λ `  n )  -  if ( n  e.  Prime ,  ( log `  n
) ,  0 ) )  /  n )  <_  2 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904    =/= wne 2641    i^i cin 3389    C_ wss 3390   ifcif 3872   class class class wbr 4395   ` cfv 5589  (class class class)co 6308   Fincfn 7587   CCcc 9555   RRcr 9556   0cc0 9557   1c1 9558    + caddc 9560    x. cmul 9562    < clt 9693    <_ cle 9694    - cmin 9880    / cdiv 10291   NNcn 10631   2c2 10681   NN0cn0 10893   ZZcz 10961   ZZ>=cuz 11182   QQcq 11287   RR+crp 11325   [,]cicc 11663   ...cfz 11810  ..^cfzo 11942   |_cfl 12059   ^cexp 12310   abscabs 13374   sum_csu 13829   Primecprime 14701   logclog 23583  Λcvma 24097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635  ax-addf 9636  ax-mulf 9637
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-map 7492  df-pm 7493  df-ixp 7541  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fsupp 7902  df-fi 7943  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-7 10695  df-8 10696  df-9 10697  df-10 10698  df-n0 10894  df-z 10962  df-dec 11075  df-uz 11183  df-q 11288  df-rp 11326  df-xneg 11432  df-xadd 11433  df-xmul 11434  df-ioo 11664  df-ioc 11665  df-ico 11666  df-icc 11667  df-fz 11811  df-fzo 11943  df-fl 12061  df-mod 12130  df-seq 12252  df-exp 12311  df-fac 12498  df-bc 12526  df-hash 12554  df-shft 13207  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-limsup 13603  df-clim 13629  df-rlim 13630  df-sum 13830  df-ef 14198  df-sin 14200  df-cos 14201  df-tan 14202  df-pi 14203  df-dvds 14383  df-gcd 14548  df-prm 14702  df-pc 14866  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-mulr 15282  df-starv 15283  df-sca 15284  df-vsca 15285  df-ip 15286  df-tset 15287  df-ple 15288  df-ds 15290  df-unif 15291  df-hom 15292  df-cco 15293  df-rest 15399  df-topn 15400  df-0g 15418  df-gsum 15419  df-topgen 15420  df-pt 15421  df-prds 15424  df-xrs 15478  df-qtop 15484  df-imas 15485  df-xps 15488  df-mre 15570  df-mrc 15571  df-acs 15573  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-submnd 16661  df-mulg 16754  df-cntz 17049  df-cmn 17510  df-psmet 19039  df-xmet 19040  df-met 19041  df-bl 19042  df-mopn 19043  df-fbas 19044  df-fg 19045  df-cnfld 19048  df-top 19998  df-bases 19999  df-topon 20000  df-topsp 20001  df-cld 20111  df-ntr 20112  df-cls 20113  df-nei 20191  df-lp 20229  df-perf 20230  df-cn 20320  df-cnp 20321  df-haus 20408  df-cmp 20479  df-tx 20654  df-hmeo 20847  df-fil 20939  df-fm 21031  df-flim 21032  df-flf 21033  df-xms 21413  df-ms 21414  df-tms 21415  df-cncf 21988  df-limc 22900  df-dv 22901  df-log 23585  df-cxp 23586  df-vma 24103
This theorem is referenced by:  rplogsum  24444
  Copyright terms: Public domain W3C validator