MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rplogsumlem2 Structured version   Unicode version

Theorem rplogsumlem2 24310
Description: Lemma for rplogsum 24352. Equation 9.2.14 of [Shapiro], p. 331. (Contributed by Mario Carneiro, 2-May-2016.)
Assertion
Ref Expression
rplogsumlem2  |-  ( A  e.  ZZ  ->  sum_ n  e.  ( 1 ... A
) ( ( (Λ `  n )  -  if ( n  e.  Prime ,  ( log `  n
) ,  0 ) )  /  n )  <_  2 )
Distinct variable group:    A, n

Proof of Theorem rplogsumlem2
Dummy variables  k  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 flid 12044 . . . . 5  |-  ( A  e.  ZZ  ->  ( |_ `  A )  =  A )
21oveq2d 6318 . . . 4  |-  ( A  e.  ZZ  ->  (
1 ... ( |_ `  A ) )  =  ( 1 ... A
) )
32sumeq1d 13755 . . 3  |-  ( A  e.  ZZ  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( ( (Λ `  n
)  -  if ( n  e.  Prime ,  ( log `  n ) ,  0 ) )  /  n )  = 
sum_ n  e.  (
1 ... A ) ( ( (Λ `  n
)  -  if ( n  e.  Prime ,  ( log `  n ) ,  0 ) )  /  n ) )
4 fveq2 5878 . . . . . 6  |-  ( n  =  ( p ^
k )  ->  (Λ `  n )  =  (Λ `  ( p ^ k
) ) )
5 eleq1 2494 . . . . . . 7  |-  ( n  =  ( p ^
k )  ->  (
n  e.  Prime  <->  ( p ^ k )  e. 
Prime ) )
6 fveq2 5878 . . . . . . 7  |-  ( n  =  ( p ^
k )  ->  ( log `  n )  =  ( log `  (
p ^ k ) ) )
75, 6ifbieq1d 3932 . . . . . 6  |-  ( n  =  ( p ^
k )  ->  if ( n  e.  Prime ,  ( log `  n
) ,  0 )  =  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )
84, 7oveq12d 6320 . . . . 5  |-  ( n  =  ( p ^
k )  ->  (
(Λ `  n )  -  if ( n  e.  Prime ,  ( log `  n
) ,  0 ) )  =  ( (Λ `  ( p ^ k
) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) ) )
9 id 23 . . . . 5  |-  ( n  =  ( p ^
k )  ->  n  =  ( p ^
k ) )
108, 9oveq12d 6320 . . . 4  |-  ( n  =  ( p ^
k )  ->  (
( (Λ `  n )  -  if ( n  e. 
Prime ,  ( log `  n ) ,  0 ) )  /  n
)  =  ( ( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  /  (
p ^ k ) ) )
11 zre 10942 . . . 4  |-  ( A  e.  ZZ  ->  A  e.  RR )
12 elfznn 11829 . . . . . . . . 9  |-  ( n  e.  ( 1 ... ( |_ `  A
) )  ->  n  e.  NN )
1312adantl 467 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  NN )
14 vmacl 24032 . . . . . . . 8  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
1513, 14syl 17 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  (Λ `  n )  e.  RR )
1613nnrpd 11340 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  RR+ )
1716relogcld 23559 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( log `  n
)  e.  RR )
18 0re 9644 . . . . . . . 8  |-  0  e.  RR
19 ifcl 3951 . . . . . . . 8  |-  ( ( ( log `  n
)  e.  RR  /\  0  e.  RR )  ->  if ( n  e. 
Prime ,  ( log `  n ) ,  0 )  e.  RR )
2017, 18, 19sylancl 666 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  if ( n  e.  Prime ,  ( log `  n ) ,  0 )  e.  RR )
2115, 20resubcld 10048 . . . . . 6  |-  ( ( A  e.  ZZ  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (Λ `  n
)  -  if ( n  e.  Prime ,  ( log `  n ) ,  0 ) )  e.  RR )
2221, 13nndivred 10659 . . . . 5  |-  ( ( A  e.  ZZ  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( (Λ `  n )  -  if ( n  e.  Prime ,  ( log `  n
) ,  0 ) )  /  n )  e.  RR )
2322recnd 9670 . . . 4  |-  ( ( A  e.  ZZ  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( (Λ `  n )  -  if ( n  e.  Prime ,  ( log `  n
) ,  0 ) )  /  n )  e.  CC )
24 simprr 764 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  -> 
(Λ `  n )  =  0 )
25 vmaprm 24031 . . . . . . . . . . . . 13  |-  ( n  e.  Prime  ->  (Λ `  n
)  =  ( log `  n ) )
26 prmnn 14613 . . . . . . . . . . . . . . 15  |-  ( n  e.  Prime  ->  n  e.  NN )
2726nnred 10625 . . . . . . . . . . . . . 14  |-  ( n  e.  Prime  ->  n  e.  RR )
28 prmgt1 14631 . . . . . . . . . . . . . 14  |-  ( n  e.  Prime  ->  1  < 
n )
2927, 28rplogcld 23565 . . . . . . . . . . . . 13  |-  ( n  e.  Prime  ->  ( log `  n )  e.  RR+ )
3025, 29eqeltrd 2510 . . . . . . . . . . . 12  |-  ( n  e.  Prime  ->  (Λ `  n
)  e.  RR+ )
3130rpne0d 11347 . . . . . . . . . . 11  |-  ( n  e.  Prime  ->  (Λ `  n
)  =/=  0 )
3231necon2bi 2661 . . . . . . . . . 10  |-  ( (Λ `  n )  =  0  ->  -.  n  e.  Prime )
3332ad2antll 733 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  ->  -.  n  e.  Prime )
3433iffalsed 3920 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  ->  if ( n  e.  Prime ,  ( log `  n
) ,  0 )  =  0 )
3524, 34oveq12d 6320 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  -> 
( (Λ `  n )  -  if ( n  e. 
Prime ,  ( log `  n ) ,  0 ) )  =  ( 0  -  0 ) )
36 0m0e0 10720 . . . . . . 7  |-  ( 0  -  0 )  =  0
3735, 36syl6eq 2479 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  -> 
( (Λ `  n )  -  if ( n  e. 
Prime ,  ( log `  n ) ,  0 ) )  =  0 )
3837oveq1d 6317 . . . . 5  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  -> 
( ( (Λ `  n
)  -  if ( n  e.  Prime ,  ( log `  n ) ,  0 ) )  /  n )  =  ( 0  /  n
) )
3912ad2antrl 732 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  ->  n  e.  NN )
4039nnrpd 11340 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  ->  n  e.  RR+ )
4140rpcnne0d 11351 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  -> 
( n  e.  CC  /\  n  =/=  0 ) )
42 div0 10299 . . . . . 6  |-  ( ( n  e.  CC  /\  n  =/=  0 )  -> 
( 0  /  n
)  =  0 )
4341, 42syl 17 . . . . 5  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  -> 
( 0  /  n
)  =  0 )
4438, 43eqtrd 2463 . . . 4  |-  ( ( A  e.  ZZ  /\  ( n  e.  (
1 ... ( |_ `  A ) )  /\  (Λ `  n )  =  0 ) )  -> 
( ( (Λ `  n
)  -  if ( n  e.  Prime ,  ( log `  n ) ,  0 ) )  /  n )  =  0 )
4510, 11, 23, 44fsumvma2 24129 . . 3  |-  ( A  e.  ZZ  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( ( (Λ `  n
)  -  if ( n  e.  Prime ,  ( log `  n ) ,  0 ) )  /  n )  = 
sum_ p  e.  (
( 0 [,] A
)  i^i  Prime ) sum_ k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k
) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) )  /  ( p ^ k ) ) )
463, 45eqtr3d 2465 . 2  |-  ( A  e.  ZZ  ->  sum_ n  e.  ( 1 ... A
) ( ( (Λ `  n )  -  if ( n  e.  Prime ,  ( log `  n
) ,  0 ) )  /  n )  =  sum_ p  e.  ( ( 0 [,] A
)  i^i  Prime ) sum_ k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k
) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) )  /  ( p ^ k ) ) )
47 fzfid 12186 . . . . 5  |-  ( A  e.  ZZ  ->  (
2 ... ( ( abs `  A )  +  1 ) )  e.  Fin )
48 inss2 3683 . . . . . . . . . . . 12  |-  ( ( 0 [,] A )  i^i  Prime )  C_  Prime
49 simpr 462 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  ( (
0 [,] A )  i^i  Prime ) )
5048, 49sseldi 3462 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  Prime )
51 prmnn 14613 . . . . . . . . . . 11  |-  ( p  e.  Prime  ->  p  e.  NN )
5250, 51syl 17 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  NN )
5352nnred 10625 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  RR )
5411adantr 466 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  A  e.  RR )
55 zcn 10943 . . . . . . . . . . . 12  |-  ( A  e.  ZZ  ->  A  e.  CC )
5655abscld 13486 . . . . . . . . . . 11  |-  ( A  e.  ZZ  ->  ( abs `  A )  e.  RR )
57 peano2re 9807 . . . . . . . . . . 11  |-  ( ( abs `  A )  e.  RR  ->  (
( abs `  A
)  +  1 )  e.  RR )
5856, 57syl 17 . . . . . . . . . 10  |-  ( A  e.  ZZ  ->  (
( abs `  A
)  +  1 )  e.  RR )
5958adantr 466 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( abs `  A
)  +  1 )  e.  RR )
60 inss1 3682 . . . . . . . . . . . . 13  |-  ( ( 0 [,] A )  i^i  Prime )  C_  (
0 [,] A )
6160sseli 3460 . . . . . . . . . . . 12  |-  ( p  e.  ( ( 0 [,] A )  i^i 
Prime )  ->  p  e.  ( 0 [,] A
) )
62 elicc2 11700 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( p  e.  ( 0 [,] A )  <-> 
( p  e.  RR  /\  0  <_  p  /\  p  <_  A ) ) )
6318, 11, 62sylancr 667 . . . . . . . . . . . 12  |-  ( A  e.  ZZ  ->  (
p  e.  ( 0 [,] A )  <->  ( p  e.  RR  /\  0  <_  p  /\  p  <_  A
) ) )
6461, 63syl5ib 222 . . . . . . . . . . 11  |-  ( A  e.  ZZ  ->  (
p  e.  ( ( 0 [,] A )  i^i  Prime )  ->  (
p  e.  RR  /\  0  <_  p  /\  p  <_  A ) ) )
6564imp 430 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  e.  RR  /\  0  <_  p  /\  p  <_  A ) )
6665simp3d 1019 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  <_  A )
6755adantr 466 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  A  e.  CC )
6867abscld 13486 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( abs `  A
)  e.  RR )
6954leabsd 13465 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  A  <_  ( abs `  A
) )
7068lep1d 10539 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( abs `  A
)  <_  ( ( abs `  A )  +  1 ) )
7154, 68, 59, 69, 70letrd 9793 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  A  <_  ( ( abs `  A )  +  1 ) )
7253, 54, 59, 66, 71letrd 9793 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  <_  ( ( abs `  A )  +  1 ) )
73 prmuz2 14630 . . . . . . . . . 10  |-  ( p  e.  Prime  ->  p  e.  ( ZZ>= `  2 )
)
7450, 73syl 17 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  ( ZZ>= ` 
2 ) )
75 nn0abscl 13364 . . . . . . . . . . . 12  |-  ( A  e.  ZZ  ->  ( abs `  A )  e. 
NN0 )
76 nn0p1nn 10910 . . . . . . . . . . . 12  |-  ( ( abs `  A )  e.  NN0  ->  ( ( abs `  A )  +  1 )  e.  NN )
7775, 76syl 17 . . . . . . . . . . 11  |-  ( A  e.  ZZ  ->  (
( abs `  A
)  +  1 )  e.  NN )
7877nnzd 11040 . . . . . . . . . 10  |-  ( A  e.  ZZ  ->  (
( abs `  A
)  +  1 )  e.  ZZ )
7978adantr 466 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( abs `  A
)  +  1 )  e.  ZZ )
80 elfz5 11793 . . . . . . . . 9  |-  ( ( p  e.  ( ZZ>= ` 
2 )  /\  (
( abs `  A
)  +  1 )  e.  ZZ )  -> 
( p  e.  ( 2 ... ( ( abs `  A )  +  1 ) )  <-> 
p  <_  ( ( abs `  A )  +  1 ) ) )
8174, 79, 80syl2anc 665 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  e.  ( 2 ... ( ( abs `  A )  +  1 ) )  <-> 
p  <_  ( ( abs `  A )  +  1 ) ) )
8272, 81mpbird 235 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )
8382ex 435 . . . . . 6  |-  ( A  e.  ZZ  ->  (
p  e.  ( ( 0 [,] A )  i^i  Prime )  ->  p  e.  ( 2 ... (
( abs `  A
)  +  1 ) ) ) )
8483ssrdv 3470 . . . . 5  |-  ( A  e.  ZZ  ->  (
( 0 [,] A
)  i^i  Prime )  C_  ( 2 ... (
( abs `  A
)  +  1 ) ) )
85 ssfi 7795 . . . . 5  |-  ( ( ( 2 ... (
( abs `  A
)  +  1 ) )  e.  Fin  /\  ( ( 0 [,] A )  i^i  Prime ) 
C_  ( 2 ... ( ( abs `  A
)  +  1 ) ) )  ->  (
( 0 [,] A
)  i^i  Prime )  e. 
Fin )
8647, 84, 85syl2anc 665 . . . 4  |-  ( A  e.  ZZ  ->  (
( 0 [,] A
)  i^i  Prime )  e. 
Fin )
87 fzfid 12186 . . . . 5  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  e.  Fin )
88 simprl 762 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  ->  p  e.  ( (
0 [,] A )  i^i  Prime ) )
8948, 88sseldi 3462 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  ->  p  e.  Prime )
90 elfznn 11829 . . . . . . . . . . 11  |-  ( k  e.  ( 1 ... ( |_ `  (
( log `  A
)  /  ( log `  p ) ) ) )  ->  k  e.  NN )
9190ad2antll 733 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
k  e.  NN )
92 vmappw 24030 . . . . . . . . . 10  |-  ( ( p  e.  Prime  /\  k  e.  NN )  ->  (Λ `  ( p ^ k
) )  =  ( log `  p ) )
9389, 91, 92syl2anc 665 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
(Λ `  ( p ^
k ) )  =  ( log `  p
) )
9452adantrr 721 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  ->  p  e.  NN )
9594nnrpd 11340 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  ->  p  e.  RR+ )
9695relogcld 23559 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
( log `  p
)  e.  RR )
9793, 96eqeltrd 2510 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
(Λ `  ( p ^
k ) )  e.  RR )
9891nnnn0d 10926 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
k  e.  NN0 )
99 nnexpcl 12285 . . . . . . . . . . . 12  |-  ( ( p  e.  NN  /\  k  e.  NN0 )  -> 
( p ^ k
)  e.  NN )
10094, 98, 99syl2anc 665 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
( p ^ k
)  e.  NN )
101100nnrpd 11340 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
( p ^ k
)  e.  RR+ )
102101relogcld 23559 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
( log `  (
p ^ k ) )  e.  RR )
103 ifcl 3951 . . . . . . . . 9  |-  ( ( ( log `  (
p ^ k ) )  e.  RR  /\  0  e.  RR )  ->  if ( ( p ^ k )  e. 
Prime ,  ( log `  ( p ^ k
) ) ,  0 )  e.  RR )
104102, 18, 103sylancl 666 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  ->  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 )  e.  RR )
10597, 104resubcld 10048 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  e.  RR )
106105, 100nndivred 10659 . . . . . 6  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
( ( (Λ `  (
p ^ k ) )  -  if ( ( p ^ k
)  e.  Prime ,  ( log `  ( p ^ k ) ) ,  0 ) )  /  ( p ^
k ) )  e.  RR )
107106anassrs 652 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  /  (
p ^ k ) )  e.  RR )
10887, 107fsumrecl 13788 . . . 4  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k
) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) )  /  ( p ^ k ) )  e.  RR )
10986, 108fsumrecl 13788 . . 3  |-  ( A  e.  ZZ  ->  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime )
sum_ k  e.  ( 1 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  /  (
p ^ k ) )  e.  RR )
11052nnrpd 11340 . . . . . 6  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  RR+ )
111110relogcld 23559 . . . . 5  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  p
)  e.  RR )
112 uz2m1nn 11234 . . . . . . 7  |-  ( p  e.  ( ZZ>= `  2
)  ->  ( p  -  1 )  e.  NN )
11374, 112syl 17 . . . . . 6  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  -  1 )  e.  NN )
11452, 113nnmulcld 10658 . . . . 5  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  x.  (
p  -  1 ) )  e.  NN )
115111, 114nndivred 10659 . . . 4  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  p
)  /  ( p  x.  ( p  - 
1 ) ) )  e.  RR )
11686, 115fsumrecl 13788 . . 3  |-  ( A  e.  ZZ  ->  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime ) ( ( log `  p
)  /  ( p  x.  ( p  - 
1 ) ) )  e.  RR )
117 2re 10680 . . . 4  |-  2  e.  RR
118117a1i 11 . . 3  |-  ( A  e.  ZZ  ->  2  e.  RR )
11918a1i 11 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
0  e.  RR )
12052nngt0d 10654 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
0  <  p )
121119, 53, 54, 120, 66ltletrd 9796 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
0  <  A )
12254, 121elrpd 11339 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  A  e.  RR+ )
123122relogcld 23559 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  A
)  e.  RR )
124 prmgt1 14631 . . . . . . . . . . . 12  |-  ( p  e.  Prime  ->  1  < 
p )
12550, 124syl 17 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
1  <  p )
12653, 125rplogcld 23565 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  p
)  e.  RR+ )
127123, 126rerpdivcld 11370 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  A
)  /  ( log `  p ) )  e.  RR )
128126rpcnd 11344 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  p
)  e.  CC )
129128mulid2d 9662 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  x.  ( log `  p ) )  =  ( log `  p
) )
130110, 122logled 23563 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  <_  A  <->  ( log `  p )  <_  ( log `  A
) ) )
13166, 130mpbid 213 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  p
)  <_  ( log `  A ) )
132129, 131eqbrtrd 4441 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  x.  ( log `  p ) )  <_  ( log `  A
) )
133 1re 9643 . . . . . . . . . . . 12  |-  1  e.  RR
134133a1i 11 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
1  e.  RR )
135134, 123, 126lemuldivd 11388 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  x.  ( log `  p
) )  <_  ( log `  A )  <->  1  <_  ( ( log `  A
)  /  ( log `  p ) ) ) )
136132, 135mpbid 213 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
1  <_  ( ( log `  A )  / 
( log `  p
) ) )
137 flge1nn 12055 . . . . . . . . 9  |-  ( ( ( ( log `  A
)  /  ( log `  p ) )  e.  RR  /\  1  <_ 
( ( log `  A
)  /  ( log `  p ) ) )  ->  ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  e.  NN )
138127, 136, 137syl2anc 665 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  e.  NN )
139 nnuz 11195 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
140138, 139syl6eleq 2520 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  e.  ( ZZ>= `  1
) )
141106recnd 9670 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
( ( (Λ `  (
p ^ k ) )  -  if ( ( p ^ k
)  e.  Prime ,  ( log `  ( p ^ k ) ) ,  0 ) )  /  ( p ^
k ) )  e.  CC )
142141anassrs 652 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  /  (
p ^ k ) )  e.  CC )
143 oveq2 6310 . . . . . . . . . 10  |-  ( k  =  1  ->  (
p ^ k )  =  ( p ^
1 ) )
144143fveq2d 5882 . . . . . . . . 9  |-  ( k  =  1  ->  (Λ `  ( p ^ k
) )  =  (Λ `  ( p ^ 1 ) ) )
145143eleq1d 2491 . . . . . . . . . 10  |-  ( k  =  1  ->  (
( p ^ k
)  e.  Prime  <->  ( p ^ 1 )  e. 
Prime ) )
146143fveq2d 5882 . . . . . . . . . 10  |-  ( k  =  1  ->  ( log `  ( p ^
k ) )  =  ( log `  (
p ^ 1 ) ) )
147145, 146ifbieq1d 3932 . . . . . . . . 9  |-  ( k  =  1  ->  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 )  =  if ( ( p ^ 1 )  e.  Prime ,  ( log `  ( p ^ 1 ) ) ,  0 ) )
148144, 147oveq12d 6320 . . . . . . . 8  |-  ( k  =  1  ->  (
(Λ `  ( p ^
k ) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) )  =  ( (Λ `  ( p ^ 1 ) )  -  if ( ( p ^
1 )  e.  Prime ,  ( log `  (
p ^ 1 ) ) ,  0 ) ) )
149148, 143oveq12d 6320 . . . . . . 7  |-  ( k  =  1  ->  (
( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  /  (
p ^ k ) )  =  ( ( (Λ `  ( p ^ 1 ) )  -  if ( ( p ^ 1 )  e.  Prime ,  ( log `  ( p ^ 1 ) ) ,  0 ) )  /  (
p ^ 1 ) ) )
150140, 142, 149fsum1p 13802 . . . . . 6  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k
) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) )  /  ( p ^ k ) )  =  ( ( ( (Λ `  ( p ^ 1 ) )  -  if ( ( p ^ 1 )  e.  Prime ,  ( log `  ( p ^ 1 ) ) ,  0 ) )  /  (
p ^ 1 ) )  +  sum_ k  e.  ( ( 1  +  1 ) ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  /  (
p ^ k ) ) ) )
15152nncnd 10626 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  CC )
152151exp1d 12411 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p ^ 1 )  =  p )
153152fveq2d 5882 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
(Λ `  ( p ^
1 ) )  =  (Λ `  p )
)
154 vmaprm 24031 . . . . . . . . . . . . 13  |-  ( p  e.  Prime  ->  (Λ `  p
)  =  ( log `  p ) )
15550, 154syl 17 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
(Λ `  p )  =  ( log `  p
) )
156153, 155eqtrd 2463 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
(Λ `  ( p ^
1 ) )  =  ( log `  p
) )
157152, 50eqeltrd 2510 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p ^ 1 )  e.  Prime )
158157iftrued 3917 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  if ( ( p ^
1 )  e.  Prime ,  ( log `  (
p ^ 1 ) ) ,  0 )  =  ( log `  (
p ^ 1 ) ) )
159152fveq2d 5882 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  (
p ^ 1 ) )  =  ( log `  p ) )
160158, 159eqtrd 2463 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  if ( ( p ^
1 )  e.  Prime ,  ( log `  (
p ^ 1 ) ) ,  0 )  =  ( log `  p
) )
161156, 160oveq12d 6320 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( (Λ `  ( p ^ 1 ) )  -  if ( ( p ^ 1 )  e.  Prime ,  ( log `  ( p ^ 1 ) ) ,  0 ) )  =  ( ( log `  p
)  -  ( log `  p ) ) )
162128subidd 9975 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  p
)  -  ( log `  p ) )  =  0 )
163161, 162eqtrd 2463 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( (Λ `  ( p ^ 1 ) )  -  if ( ( p ^ 1 )  e.  Prime ,  ( log `  ( p ^ 1 ) ) ,  0 ) )  =  0 )
164163, 152oveq12d 6320 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( (Λ `  (
p ^ 1 ) )  -  if ( ( p ^ 1 )  e.  Prime ,  ( log `  ( p ^ 1 ) ) ,  0 ) )  /  ( p ^
1 ) )  =  ( 0  /  p
) )
165110rpcnne0d 11351 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  e.  CC  /\  p  =/=  0 ) )
166 div0 10299 . . . . . . . . 9  |-  ( ( p  e.  CC  /\  p  =/=  0 )  -> 
( 0  /  p
)  =  0 )
167165, 166syl 17 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 0  /  p
)  =  0 )
168164, 167eqtrd 2463 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( (Λ `  (
p ^ 1 ) )  -  if ( ( p ^ 1 )  e.  Prime ,  ( log `  ( p ^ 1 ) ) ,  0 ) )  /  ( p ^
1 ) )  =  0 )
169 1p1e2 10724 . . . . . . . . . 10  |-  ( 1  +  1 )  =  2
170169oveq1i 6312 . . . . . . . . 9  |-  ( ( 1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) )  =  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) )
171170a1i 11 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  +  1 ) ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  =  ( 2 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) )
172 elfzuz 11797 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 2 ... ( |_ `  (
( log `  A
)  /  ( log `  p ) ) ) )  ->  k  e.  ( ZZ>= `  2 )
)
173 eluz2nn 11198 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ZZ>= `  2
)  ->  k  e.  NN )
174172, 173syl 17 . . . . . . . . . . . . 13  |-  ( k  e.  ( 2 ... ( |_ `  (
( log `  A
)  /  ( log `  p ) ) ) )  ->  k  e.  NN )
175174, 170eleq2s 2530 . . . . . . . . . . . 12  |-  ( k  e.  ( ( 1  +  1 ) ... ( |_ `  (
( log `  A
)  /  ( log `  p ) ) ) )  ->  k  e.  NN )
17650, 175, 92syl2an 479 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( (
1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (Λ `  ( p ^ k
) )  =  ( log `  p ) )
17752adantr 466 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( (
1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  p  e.  NN )
178 nnq 11278 . . . . . . . . . . . . . 14  |-  ( p  e.  NN  ->  p  e.  QQ )
179177, 178syl 17 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( (
1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  p  e.  QQ )
180172, 170eleq2s 2530 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ( 1  +  1 ) ... ( |_ `  (
( log `  A
)  /  ( log `  p ) ) ) )  ->  k  e.  ( ZZ>= `  2 )
)
181180adantl 467 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( (
1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  k  e.  ( ZZ>= `  2 )
)
182 expnprm 14835 . . . . . . . . . . . . 13  |-  ( ( p  e.  QQ  /\  k  e.  ( ZZ>= ` 
2 ) )  ->  -.  ( p ^ k
)  e.  Prime )
183179, 181, 182syl2anc 665 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( (
1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  -.  ( p ^ k
)  e.  Prime )
184183iffalsed 3920 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( (
1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 )  =  0 )
185176, 184oveq12d 6320 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( (
1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
(Λ `  ( p ^
k ) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) )  =  ( ( log `  p )  -  0 ) )
186128subid1d 9976 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  p
)  -  0 )  =  ( log `  p
) )
187186adantr 466 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( (
1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
( log `  p
)  -  0 )  =  ( log `  p
) )
188185, 187eqtrd 2463 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( (
1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
(Λ `  ( p ^
k ) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) )  =  ( log `  p ) )
189188oveq1d 6317 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( (
1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  /  (
p ^ k ) )  =  ( ( log `  p )  /  ( p ^
k ) ) )
190171, 189sumeq12dv 13760 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( ( 1  +  1 ) ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k
) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) )  /  ( p ^ k ) )  =  sum_ k  e.  ( 2 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( log `  p )  /  ( p ^
k ) ) )
191168, 190oveq12d 6320 . . . . . 6  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( ( (Λ `  ( p ^ 1 ) )  -  if ( ( p ^
1 )  e.  Prime ,  ( log `  (
p ^ 1 ) ) ,  0 ) )  /  ( p ^ 1 ) )  +  sum_ k  e.  ( ( 1  +  1 ) ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  /  (
p ^ k ) ) )  =  ( 0  +  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( log `  p )  /  ( p ^
k ) ) ) )
192 fzfid 12186 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 2 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  e.  Fin )
193111adantr 466 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  ( log `  p
)  e.  RR )
194 nnnn0 10877 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  k  e.  NN0 )
19552, 194, 99syl2an 479 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  ( p ^ k
)  e.  NN )
196193, 195nndivred 10659 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  ( ( log `  p
)  /  ( p ^ k ) )  e.  RR )
197174, 196sylan2 476 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
( log `  p
)  /  ( p ^ k ) )  e.  RR )
198192, 197fsumrecl 13788 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( log `  p )  /  (
p ^ k ) )  e.  RR )
199198recnd 9670 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( log `  p )  /  (
p ^ k ) )  e.  CC )
200199addid2d 9835 . . . . . 6  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 0  +  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( log `  p )  /  (
p ^ k ) ) )  =  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( log `  p )  /  (
p ^ k ) ) )
201150, 191, 2003eqtrd 2467 . . . . 5  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k
) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) )  /  ( p ^ k ) )  =  sum_ k  e.  ( 2 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( log `  p )  /  ( p ^
k ) ) )
202110rpreccld 11352 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  /  p
)  e.  RR+ )
203127flcld 12034 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  e.  ZZ )
204203peano2zd 11044 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 )  e.  ZZ )
205202, 204rpexpcld 12439 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  /  p ) ^ (
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  +  1 ) )  e.  RR+ )
206205rpge0d 11346 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
0  <_  ( (
1  /  p ) ^ ( ( |_
`  ( ( log `  A )  /  ( log `  p ) ) )  +  1 ) ) )
20752nnrecred 10656 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  /  p
)  e.  RR )
208207resqcld 12442 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  /  p ) ^ 2 )  e.  RR )
209138peano2nnd 10627 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 )  e.  NN )
210209nnnn0d 10926 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 )  e. 
NN0 )
211207, 210reexpcld 12433 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  /  p ) ^ (
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  +  1 ) )  e.  RR )
212208, 211subge02d 10206 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 0  <_  (
( 1  /  p
) ^ ( ( |_ `  ( ( log `  A )  /  ( log `  p
) ) )  +  1 ) )  <->  ( (
( 1  /  p
) ^ 2 )  -  ( ( 1  /  p ) ^
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) )  <_  ( (
1  /  p ) ^ 2 ) ) )
213206, 212mpbid 213 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( ( 1  /  p ) ^
2 )  -  (
( 1  /  p
) ^ ( ( |_ `  ( ( log `  A )  /  ( log `  p
) ) )  +  1 ) ) )  <_  ( ( 1  /  p ) ^
2 ) )
214113nnrpd 11340 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  -  1 )  e.  RR+ )
215214rpcnne0d 11351 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( p  - 
1 )  e.  CC  /\  ( p  -  1 )  =/=  0 ) )
216202rpcnd 11344 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  /  p
)  e.  CC )
217 dmdcan 10318 . . . . . . . . . . 11  |-  ( ( ( ( p  - 
1 )  e.  CC  /\  ( p  -  1 )  =/=  0 )  /\  ( p  e.  CC  /\  p  =/=  0 )  /\  (
1  /  p )  e.  CC )  -> 
( ( ( p  -  1 )  /  p )  x.  (
( 1  /  p
)  /  ( p  -  1 ) ) )  =  ( ( 1  /  p )  /  p ) )
218215, 165, 216, 217syl3anc 1264 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( ( p  -  1 )  /  p )  x.  (
( 1  /  p
)  /  ( p  -  1 ) ) )  =  ( ( 1  /  p )  /  p ) )
219134recnd 9670 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
1  e.  CC )
220 divsubdir 10304 . . . . . . . . . . . . 13  |-  ( ( p  e.  CC  /\  1  e.  CC  /\  (
p  e.  CC  /\  p  =/=  0 ) )  ->  ( ( p  -  1 )  /  p )  =  ( ( p  /  p
)  -  ( 1  /  p ) ) )
221151, 219, 165, 220syl3anc 1264 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( p  - 
1 )  /  p
)  =  ( ( p  /  p )  -  ( 1  /  p ) ) )
222 divid 10298 . . . . . . . . . . . . . 14  |-  ( ( p  e.  CC  /\  p  =/=  0 )  -> 
( p  /  p
)  =  1 )
223165, 222syl 17 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  /  p
)  =  1 )
224223oveq1d 6317 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( p  /  p )  -  (
1  /  p ) )  =  ( 1  -  ( 1  /  p ) ) )
225221, 224eqtrd 2463 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( p  - 
1 )  /  p
)  =  ( 1  -  ( 1  /  p ) ) )
226 divdiv1 10319 . . . . . . . . . . . 12  |-  ( ( 1  e.  CC  /\  ( p  e.  CC  /\  p  =/=  0 )  /\  ( ( p  -  1 )  e.  CC  /\  ( p  -  1 )  =/=  0 ) )  -> 
( ( 1  /  p )  /  (
p  -  1 ) )  =  ( 1  /  ( p  x.  ( p  -  1 ) ) ) )
227219, 165, 215, 226syl3anc 1264 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  /  p )  /  (
p  -  1 ) )  =  ( 1  /  ( p  x.  ( p  -  1 ) ) ) )
228225, 227oveq12d 6320 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( ( p  -  1 )  /  p )  x.  (
( 1  /  p
)  /  ( p  -  1 ) ) )  =  ( ( 1  -  ( 1  /  p ) )  x.  ( 1  / 
( p  x.  (
p  -  1 ) ) ) ) )
22952nnne0d 10655 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  =/=  0 )
230216, 151, 229divrecd 10387 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  /  p )  /  p
)  =  ( ( 1  /  p )  x.  ( 1  /  p ) ) )
231216sqvald 12413 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  /  p ) ^ 2 )  =  ( ( 1  /  p )  x.  ( 1  /  p ) ) )
232230, 231eqtr4d 2466 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  /  p )  /  p
)  =  ( ( 1  /  p ) ^ 2 ) )
233218, 228, 2323eqtr3d 2471 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  -  ( 1  /  p
) )  x.  (
1  /  ( p  x.  ( p  - 
1 ) ) ) )  =  ( ( 1  /  p ) ^ 2 ) )
234213, 233breqtrrd 4447 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( ( 1  /  p ) ^
2 )  -  (
( 1  /  p
) ^ ( ( |_ `  ( ( log `  A )  /  ( log `  p
) ) )  +  1 ) ) )  <_  ( ( 1  -  ( 1  /  p ) )  x.  ( 1  /  (
p  x.  ( p  -  1 ) ) ) ) )
235208, 211resubcld 10048 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( ( 1  /  p ) ^
2 )  -  (
( 1  /  p
) ^ ( ( |_ `  ( ( log `  A )  /  ( log `  p
) ) )  +  1 ) ) )  e.  RR )
236114nnrecred 10656 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  /  (
p  x.  ( p  -  1 ) ) )  e.  RR )
237 resubcl 9939 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  ( 1  /  p
)  e.  RR )  ->  ( 1  -  ( 1  /  p
) )  e.  RR )
238133, 207, 237sylancr 667 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  -  (
1  /  p ) )  e.  RR )
239 recgt1 10503 . . . . . . . . . . . 12  |-  ( ( p  e.  RR  /\  0  <  p )  -> 
( 1  <  p  <->  ( 1  /  p )  <  1 ) )
24053, 120, 239syl2anc 665 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  <  p  <->  ( 1  /  p )  <  1 ) )
241125, 240mpbid 213 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  /  p
)  <  1 )
242 posdif 10108 . . . . . . . . . . 11  |-  ( ( ( 1  /  p
)  e.  RR  /\  1  e.  RR )  ->  ( ( 1  /  p )  <  1  <->  0  <  ( 1  -  ( 1  /  p
) ) ) )
243207, 133, 242sylancl 666 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( 1  /  p )  <  1  <->  0  <  ( 1  -  ( 1  /  p
) ) ) )
244241, 243mpbid 213 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
0  <  ( 1  -  ( 1  /  p ) ) )
245 ledivmul 10482 . . . . . . . . 9  |-  ( ( ( ( ( 1  /  p ) ^
2 )  -  (
( 1  /  p
) ^ ( ( |_ `  ( ( log `  A )  /  ( log `  p
) ) )  +  1 ) ) )  e.  RR  /\  (
1  /  ( p  x.  ( p  - 
1 ) ) )  e.  RR  /\  (
( 1  -  (
1  /  p ) )  e.  RR  /\  0  <  ( 1  -  ( 1  /  p
) ) ) )  ->  ( ( ( ( ( 1  /  p ) ^ 2 )  -  ( ( 1  /  p ) ^ ( ( |_
`  ( ( log `  A )  /  ( log `  p ) ) )  +  1 ) ) )  /  (
1  -  ( 1  /  p ) ) )  <_  ( 1  /  ( p  x.  ( p  -  1 ) ) )  <->  ( (
( 1  /  p
) ^ 2 )  -  ( ( 1  /  p ) ^
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) )  <_  ( (
1  -  ( 1  /  p ) )  x.  ( 1  / 
( p  x.  (
p  -  1 ) ) ) ) ) )
246235, 236, 238, 244, 245syl112anc 1268 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( ( ( ( 1  /  p
) ^ 2 )  -  ( ( 1  /  p ) ^
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) )  /  ( 1  -  ( 1  /  p ) ) )  <_  ( 1  / 
( p  x.  (
p  -  1 ) ) )  <->  ( (
( 1  /  p
) ^ 2 )  -  ( ( 1  /  p ) ^
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) )  <_  ( (
1  -  ( 1  /  p ) )  x.  ( 1  / 
( p  x.  (
p  -  1 ) ) ) ) ) )
247234, 246mpbird 235 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( ( ( 1  /  p ) ^ 2 )  -  ( ( 1  /  p ) ^ (
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) )  /  ( 1  -  ( 1  /  p ) ) )  <_  ( 1  / 
( p  x.  (
p  -  1 ) ) ) )
248238, 244elrpd 11339 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  -  (
1  /  p ) )  e.  RR+ )
249235, 248rerpdivcld 11370 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( ( ( 1  /  p ) ^ 2 )  -  ( ( 1  /  p ) ^ (
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) )  /  ( 1  -  ( 1  /  p ) ) )  e.  RR )
250249, 236, 126lemul2d 11383 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( ( ( ( 1  /  p
) ^ 2 )  -  ( ( 1  /  p ) ^
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) )  /  ( 1  -  ( 1  /  p ) ) )  <_  ( 1  / 
( p  x.  (
p  -  1 ) ) )  <->  ( ( log `  p )  x.  ( ( ( ( 1  /  p ) ^ 2 )  -  ( ( 1  /  p ) ^ (
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) )  /  ( 1  -  ( 1  /  p ) ) ) )  <_  ( ( log `  p )  x.  ( 1  /  (
p  x.  ( p  -  1 ) ) ) ) ) )
251247, 250mpbid 213 . . . . . 6  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  p
)  x.  ( ( ( ( 1  /  p ) ^ 2 )  -  ( ( 1  /  p ) ^ ( ( |_
`  ( ( log `  A )  /  ( log `  p ) ) )  +  1 ) ) )  /  (
1  -  ( 1  /  p ) ) ) )  <_  (
( log `  p
)  x.  ( 1  /  ( p  x.  ( p  -  1 ) ) ) ) )
252128adantr 466 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  ( log `  p
)  e.  CC )
253195nncnd 10626 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  ( p ^ k
)  e.  CC )
254195nnne0d 10655 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  ( p ^ k
)  =/=  0 )
255252, 253, 254divrecd 10387 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  ( ( log `  p
)  /  ( p ^ k ) )  =  ( ( log `  p )  x.  (
1  /  ( p ^ k ) ) ) )
256151adantr 466 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  p  e.  CC )
25752adantr 466 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  p  e.  NN )
258257nnne0d 10655 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  p  =/=  0 )
259 nnz 10960 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  k  e.  ZZ )
260259adantl 467 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  k  e.  ZZ )
261256, 258, 260exprecd 12424 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  ( ( 1  /  p ) ^ k
)  =  ( 1  /  ( p ^
k ) ) )
262261oveq2d 6318 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  ( ( log `  p
)  x.  ( ( 1  /  p ) ^ k ) )  =  ( ( log `  p )  x.  (
1  /  ( p ^ k ) ) ) )
263255, 262eqtr4d 2466 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  NN )  ->  ( ( log `  p
)  /  ( p ^ k ) )  =  ( ( log `  p )  x.  (
( 1  /  p
) ^ k ) ) )
264174, 263sylan2 476 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
( log `  p
)  /  ( p ^ k ) )  =  ( ( log `  p )  x.  (
( 1  /  p
) ^ k ) ) )
265264sumeq2dv 13757 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( log `  p )  /  (
p ^ k ) )  =  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( log `  p )  x.  ( ( 1  /  p ) ^
k ) ) )
266174nnnn0d 10926 . . . . . . . . 9  |-  ( k  e.  ( 2 ... ( |_ `  (
( log `  A
)  /  ( log `  p ) ) ) )  ->  k  e.  NN0 )
267 expcl 12290 . . . . . . . . 9  |-  ( ( ( 1  /  p
)  e.  CC  /\  k  e.  NN0 )  -> 
( ( 1  /  p ) ^ k
)  e.  CC )
268216, 266, 267syl2an 479 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  p  e.  ( ( 0 [,] A )  i^i  Prime ) )  /\  k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
( 1  /  p
) ^ k )  e.  CC )
269192, 128, 268fsummulc2 13833 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  p
)  x.  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( 1  /  p ) ^ k ) )  =  sum_ k  e.  ( 2 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( log `  p )  x.  ( ( 1  /  p ) ^
k ) ) )
270 fzval3 11983 . . . . . . . . . . 11  |-  ( ( |_ `  ( ( log `  A )  /  ( log `  p
) ) )  e.  ZZ  ->  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) )  =  ( 2..^ ( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) )
271203, 270syl 17 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 2 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  =  ( 2..^ ( ( |_
`  ( ( log `  A )  /  ( log `  p ) ) )  +  1 ) ) )
272271sumeq1d 13755 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( 1  /  p ) ^
k )  =  sum_ k  e.  ( 2..^ ( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) ( ( 1  /  p ) ^ k
) )
273207, 241ltned 9772 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1  /  p
)  =/=  1 )
274 2nn0 10887 . . . . . . . . . . 11  |-  2  e.  NN0
275274a1i 11 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
2  e.  NN0 )
276 eluzp1p1 11185 . . . . . . . . . . . 12  |-  ( ( |_ `  ( ( log `  A )  /  ( log `  p
) ) )  e.  ( ZZ>= `  1 )  ->  ( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 )  e.  ( ZZ>= `  ( 1  +  1 ) ) )
277140, 276syl 17 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 )  e.  ( ZZ>= `  ( 1  +  1 ) ) )
278 df-2 10669 . . . . . . . . . . . 12  |-  2  =  ( 1  +  1 )
279278fveq2i 5881 . . . . . . . . . . 11  |-  ( ZZ>= ` 
2 )  =  (
ZZ>= `  ( 1  +  1 ) )
280277, 279syl6eleqr 2521 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 )  e.  ( ZZ>= `  2 )
)
281216, 273, 275, 280geoserg 13912 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 2..^ ( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) ( ( 1  /  p ) ^ k
)  =  ( ( ( ( 1  /  p ) ^ 2 )  -  ( ( 1  /  p ) ^ ( ( |_
`  ( ( log `  A )  /  ( log `  p ) ) )  +  1 ) ) )  /  (
1  -  ( 1  /  p ) ) ) )
282272, 281eqtrd 2463 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( 1  /  p ) ^
k )  =  ( ( ( ( 1  /  p ) ^
2 )  -  (
( 1  /  p
) ^ ( ( |_ `  ( ( log `  A )  /  ( log `  p
) ) )  +  1 ) ) )  /  ( 1  -  ( 1  /  p
) ) ) )
283282oveq2d 6318 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  p
)  x.  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( 1  /  p ) ^ k ) )  =  ( ( log `  p )  x.  (
( ( ( 1  /  p ) ^
2 )  -  (
( 1  /  p
) ^ ( ( |_ `  ( ( log `  A )  /  ( log `  p
) ) )  +  1 ) ) )  /  ( 1  -  ( 1  /  p
) ) ) ) )
284265, 269, 2833eqtr2d 2469 . . . . . 6  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( log `  p )  /  (
p ^ k ) )  =  ( ( log `  p )  x.  ( ( ( ( 1  /  p
) ^ 2 )  -  ( ( 1  /  p ) ^
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  +  1 ) ) )  /  ( 1  -  ( 1  /  p ) ) ) ) )
285114nncnd 10626 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  x.  (
p  -  1 ) )  e.  CC )
286114nnne0d 10655 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  x.  (
p  -  1 ) )  =/=  0 )
287128, 285, 286divrecd 10387 . . . . . 6  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  p
)  /  ( p  x.  ( p  - 
1 ) ) )  =  ( ( log `  p )  x.  (
1  /  ( p  x.  ( p  - 
1 ) ) ) ) )
288251, 284, 2873brtr4d 4451 . . . . 5  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 2 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( log `  p )  /  (
p ^ k ) )  <_  ( ( log `  p )  / 
( p  x.  (
p  -  1 ) ) ) )
289201, 288eqbrtrd 4441 . . . 4  |-  ( ( A  e.  ZZ  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k
) )  -  if ( ( p ^
k )  e.  Prime ,  ( log `  (
p ^ k ) ) ,  0 ) )  /  ( p ^ k ) )  <_  ( ( log `  p )  /  (
p  x.  ( p  -  1 ) ) ) )
29086, 108, 115, 289fsumle 13847 . . 3  |-  ( A  e.  ZZ  ->  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime )
sum_ k  e.  ( 1 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  /  (
p ^ k ) )  <_  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime ) ( ( log `  p
)  /  ( p  x.  ( p  - 
1 ) ) ) )
291 elfzuz 11797 . . . . . . . . . . 11  |-  ( p  e.  ( 2 ... ( ( abs `  A
)  +  1 ) )  ->  p  e.  ( ZZ>= `  2 )
)
292 eluz2nn 11198 . . . . . . . . . . 11  |-  ( p  e.  ( ZZ>= `  2
)  ->  p  e.  NN )
293291, 292syl 17 . . . . . . . . . 10  |-  ( p  e.  ( 2 ... ( ( abs `  A
)  +  1 ) )  ->  p  e.  NN )
294293adantl 467 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  ->  p  e.  NN )
295294nnred 10625 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  ->  p  e.  RR )
296291adantl 467 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  ->  p  e.  ( ZZ>= ` 
2 ) )
297 eluz2b2 11232 . . . . . . . . . 10  |-  ( p  e.  ( ZZ>= `  2
)  <->  ( p  e.  NN  /\  1  < 
p ) )
298297simprbi 465 . . . . . . . . 9  |-  ( p  e.  ( ZZ>= `  2
)  ->  1  <  p )
299296, 298syl 17 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  -> 
1  <  p )
300295, 299rplogcld 23565 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  -> 
( log `  p
)  e.  RR+ )
301296, 112syl 17 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  -> 
( p  -  1 )  e.  NN )
302294, 301nnmulcld 10658 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  -> 
( p  x.  (
p  -  1 ) )  e.  NN )
303302nnrpd 11340 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  -> 
( p  x.  (
p  -  1 ) )  e.  RR+ )
304300, 303rpdivcld 11359 . . . . . 6  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  -> 
( ( log `  p
)  /  ( p  x.  ( p  - 
1 ) ) )  e.  RR+ )
305304rpred 11342 . . . . 5  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  -> 
( ( log `  p
)  /  ( p  x.  ( p  - 
1 ) ) )  e.  RR )
30647, 305fsumrecl 13788 . . . 4  |-  ( A  e.  ZZ  ->  sum_ p  e.  ( 2 ... (
( abs `  A
)  +  1 ) ) ( ( log `  p )  /  (
p  x.  ( p  -  1 ) ) )  e.  RR )
307304rpge0d 11346 . . . . 5  |-  ( ( A  e.  ZZ  /\  p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) )  -> 
0  <_  ( ( log `  p )  / 
( p  x.  (
p  -  1 ) ) ) )
30847, 305, 307, 84fsumless 13844 . . . 4  |-  ( A  e.  ZZ  ->  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime ) ( ( log `  p
)  /  ( p  x.  ( p  - 
1 ) ) )  <_  sum_ p  e.  ( 2 ... ( ( abs `  A )  +  1 ) ) ( ( log `  p
)  /  ( p  x.  ( p  - 
1 ) ) ) )
309 rplogsumlem1 24309 . . . . 5  |-  ( ( ( abs `  A
)  +  1 )  e.  NN  ->  sum_ p  e.  ( 2 ... (
( abs `  A
)  +  1 ) ) ( ( log `  p )  /  (
p  x.  ( p  -  1 ) ) )  <_  2 )
31077, 309syl 17 . . . 4  |-  ( A  e.  ZZ  ->  sum_ p  e.  ( 2 ... (
( abs `  A
)  +  1 ) ) ( ( log `  p )  /  (
p  x.  ( p  -  1 ) ) )  <_  2 )
311116, 306, 118, 308, 310letrd 9793 . . 3  |-  ( A  e.  ZZ  ->  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime ) ( ( log `  p
)  /  ( p  x.  ( p  - 
1 ) ) )  <_  2 )
312109, 116, 118, 290, 311letrd 9793 . 2  |-  ( A  e.  ZZ  ->  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime )
sum_ k  e.  ( 1 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( ( (Λ `  ( p ^ k ) )  -  if ( ( p ^ k )  e.  Prime ,  ( log `  ( p ^ k
) ) ,  0 ) )  /  (
p ^ k ) )  <_  2 )
31346, 312eqbrtrd 4441 1  |-  ( A  e.  ZZ  ->  sum_ n  e.  ( 1 ... A
) ( ( (Λ `  n )  -  if ( n  e.  Prime ,  ( log `  n
) ,  0 ) )  /  n )  <_  2 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1868    =/= wne 2618    i^i cin 3435    C_ wss 3436   ifcif 3909   class class class wbr 4420   ` cfv 5598  (class class class)co 6302   Fincfn 7574   CCcc 9538   RRcr 9539   0cc0 9540   1c1 9541    + caddc 9543    x. cmul 9545    < clt 9676    <_ cle 9677    - cmin 9861    / cdiv 10270   NNcn 10610   2c2 10660   NN0cn0 10870   ZZcz 10938   ZZ>=cuz 11160   QQcq 11265   RR+crp 11303   [,]cicc 11639   ...cfz 11785  ..^cfzo 11916   |_cfl 12026   ^cexp 12272   abscabs 13286   sum_csu 13740   Primecprime 14610   logclog 23491  Λcvma 24005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4552  ax-pow 4599  ax-pr 4657  ax-un 6594  ax-inf2 8149  ax-cnex 9596  ax-resscn 9597  ax-1cn 9598  ax-icn 9599  ax-addcl 9600  ax-addrcl 9601  ax-mulcl 9602  ax-mulrcl 9603  ax-mulcom 9604  ax-addass 9605  ax-mulass 9606  ax-distr 9607  ax-i2m1 9608  ax-1ne0 9609  ax-1rid 9610  ax-rnegex 9611  ax-rrecex 9612  ax-cnre 9613  ax-pre-lttri 9614  ax-pre-lttrn 9615  ax-pre-ltadd 9616  ax-pre-mulgt0 9617  ax-pre-sup 9618  ax-addf 9619  ax-mulf 9620
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-int 4253  df-iun 4298  df-iin 4299  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4761  df-id 4765  df-po 4771  df-so 4772  df-fr 4809  df-se 4810  df-we 4811  df-xp 4856  df-rel 4857  df-cnv 4858  df-co 4859  df-dm 4860  df-rn 4861  df-res 4862  df-ima 4863  df-pred 5396  df-ord 5442  df-on 5443  df-lim 5444  df-suc 5445  df-iota 5562  df-fun 5600  df-fn 5601  df-f 5602  df-f1 5603  df-fo 5604  df-f1o 5605  df-fv 5606  df-isom 5607  df-riota 6264  df-ov 6305  df-oprab 6306  df-mpt2 6307  df-of 6542  df-om 6704  df-1st 6804  df-2nd 6805  df-supp 6923  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-1o 7187  df-2o 7188  df-oadd 7191  df-er 7368  df-map 7479  df-pm 7480  df-ixp 7528  df-en 7575  df-dom 7576  df-sdom 7577  df-fin 7578  df-fsupp 7887  df-fi 7928  df-sup 7959  df-inf 7960  df-oi 8028  df-card 8375  df-cda 8599  df-pnf 9678  df-mnf 9679  df-xr 9680  df-ltxr 9681  df-le 9682  df-sub 9863  df-neg 9864  df-div 10271  df-nn 10611  df-2 10669  df-3 10670  df-4 10671  df-5 10672  df-6 10673  df-7 10674  df-8 10675  df-9 10676  df-10 10677  df-n0 10871  df-z 10939  df-dec 11053  df-uz 11161  df-q 11266  df-rp 11304  df-xneg 11410  df-xadd 11411  df-xmul 11412  df-ioo 11640  df-ioc 11641  df-ico 11642  df-icc 11643  df-fz 11786  df-fzo 11917  df-fl 12028  df-mod 12097  df-seq 12214  df-exp 12273  df-fac 12460  df-bc 12488  df-hash 12516  df-shft 13119  df-cj 13151  df-re 13152  df-im 13153  df-sqrt 13287  df-abs 13288  df-limsup 13514  df-clim 13540  df-rlim 13541  df-sum 13741  df-ef 14109  df-sin 14111  df-cos 14112  df-tan 14113  df-pi 14114  df-dvds 14294  df-gcd 14457  df-prm 14611  df-pc 14775  df-struct 15111  df-ndx 15112  df-slot 15113  df-base 15114  df-sets 15115  df-ress 15116  df-plusg 15191  df-mulr 15192  df-starv 15193  df-sca 15194  df-vsca 15195  df-ip 15196  df-tset 15197  df-ple 15198  df-ds 15200  df-unif 15201  df-hom 15202  df-cco 15203  df-rest 15309  df-topn 15310  df-0g 15328  df-gsum 15329  df-topgen 15330  df-pt 15331  df-prds 15334  df-xrs 15388  df-qtop 15394  df-imas 15395  df-xps 15398  df-mre 15480  df-mrc 15481  df-acs 15483  df-mgm 16476  df-sgrp 16515  df-mnd 16525  df-submnd 16571  df-mulg 16664  df-cntz 16959  df-cmn 17420  df-psmet 18950  df-xmet 18951  df-met 18952  df-bl 18953  df-mopn 18954  df-fbas 18955  df-fg 18956  df-cnfld 18959  df-top 19908  df-bases 19909  df-topon 19910  df-topsp 19911  df-cld 20021  df-ntr 20022  df-cls 20023  df-nei 20101  df-lp 20139  df-perf 20140  df-cn 20230  df-cnp 20231  df-haus 20318  df-cmp 20389  df-tx 20564  df-hmeo 20757  df-fil 20848  df-fm 20940  df-flim 20941  df-flf 20942  df-xms 21322  df-ms 21323  df-tms 21324  df-cncf 21897  df-limc 22808  df-dv 22809  df-log 23493  df-cxp 23494  df-vma 24011
This theorem is referenced by:  rplogsum  24352
  Copyright terms: Public domain W3C validator