MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rplogsumlem1 Structured version   Visualization version   Unicode version

Theorem rplogsumlem1 24322
Description: Lemma for rplogsum 24365. (Contributed by Mario Carneiro, 2-May-2016.)
Assertion
Ref Expression
rplogsumlem1  |-  ( A  e.  NN  ->  sum_ n  e.  ( 2 ... A
) ( ( log `  n )  /  (
n  x.  ( n  -  1 ) ) )  <_  2 )
Distinct variable group:    A, n

Proof of Theorem rplogsumlem1
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 fzfid 12186 . . 3  |-  ( A  e.  NN  ->  (
2 ... A )  e. 
Fin )
2 elfzuz 11796 . . . . . . . 8  |-  ( n  e.  ( 2 ... A )  ->  n  e.  ( ZZ>= `  2 )
)
3 eluz2nn 11197 . . . . . . . 8  |-  ( n  e.  ( ZZ>= `  2
)  ->  n  e.  NN )
42, 3syl 17 . . . . . . 7  |-  ( n  e.  ( 2 ... A )  ->  n  e.  NN )
54adantl 468 . . . . . 6  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  n  e.  NN )
65nnrpd 11339 . . . . 5  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  n  e.  RR+ )
76relogcld 23572 . . . 4  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( log `  n
)  e.  RR )
82adantl 468 . . . . . 6  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  n  e.  (
ZZ>= `  2 ) )
9 uz2m1nn 11233 . . . . . 6  |-  ( n  e.  ( ZZ>= `  2
)  ->  ( n  -  1 )  e.  NN )
108, 9syl 17 . . . . 5  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( n  - 
1 )  e.  NN )
115, 10nnmulcld 10657 . . . 4  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( n  x.  ( n  -  1 ) )  e.  NN )
127, 11nndivred 10658 . . 3  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( log `  n )  /  (
n  x.  ( n  -  1 ) ) )  e.  RR )
131, 12fsumrecl 13800 . 2  |-  ( A  e.  NN  ->  sum_ n  e.  ( 2 ... A
) ( ( log `  n )  /  (
n  x.  ( n  -  1 ) ) )  e.  RR )
14 2re 10679 . . . . 5  |-  2  e.  RR
1510nnrpd 11339 . . . . . 6  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( n  - 
1 )  e.  RR+ )
1615rpsqrtcld 13473 . . . . 5  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( sqr `  (
n  -  1 ) )  e.  RR+ )
17 rerpdivcl 11330 . . . . 5  |-  ( ( 2  e.  RR  /\  ( sqr `  ( n  -  1 ) )  e.  RR+ )  ->  (
2  /  ( sqr `  ( n  -  1 ) ) )  e.  RR )
1814, 16, 17sylancr 669 . . . 4  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( 2  / 
( sqr `  (
n  -  1 ) ) )  e.  RR )
196rpsqrtcld 13473 . . . . 5  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( sqr `  n
)  e.  RR+ )
20 rerpdivcl 11330 . . . . 5  |-  ( ( 2  e.  RR  /\  ( sqr `  n )  e.  RR+ )  ->  (
2  /  ( sqr `  n ) )  e.  RR )
2114, 19, 20sylancr 669 . . . 4  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( 2  / 
( sqr `  n
) )  e.  RR )
2218, 21resubcld 10047 . . 3  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( 2  /  ( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  n ) ) )  e.  RR )
231, 22fsumrecl 13800 . 2  |-  ( A  e.  NN  ->  sum_ n  e.  ( 2 ... A
) ( ( 2  /  ( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  n ) ) )  e.  RR )
2414a1i 11 . 2  |-  ( A  e.  NN  ->  2  e.  RR )
2516rpred 11341 . . . . 5  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( sqr `  (
n  -  1 ) )  e.  RR )
265nnred 10624 . . . . . . 7  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  n  e.  RR )
27 peano2rem 9941 . . . . . . . 8  |-  ( n  e.  RR  ->  (
n  -  1 )  e.  RR )
2826, 27syl 17 . . . . . . 7  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( n  - 
1 )  e.  RR )
2926, 28remulcld 9671 . . . . . 6  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( n  x.  ( n  -  1 ) )  e.  RR )
3029, 22remulcld 9671 . . . . 5  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( n  x.  ( n  - 
1 ) )  x.  ( ( 2  / 
( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  n ) ) ) )  e.  RR )
315nncnd 10625 . . . . . . . 8  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  n  e.  CC )
32 ax-1cn 9597 . . . . . . . 8  |-  1  e.  CC
33 npcan 9884 . . . . . . . 8  |-  ( ( n  e.  CC  /\  1  e.  CC )  ->  ( ( n  - 
1 )  +  1 )  =  n )
3431, 32, 33sylancl 668 . . . . . . 7  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( n  -  1 )  +  1 )  =  n )
3534fveq2d 5869 . . . . . 6  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( log `  (
( n  -  1 )  +  1 ) )  =  ( log `  n ) )
3615rpge0d 11345 . . . . . . 7  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  0  <_  (
n  -  1 ) )
37 loglesqrt 23698 . . . . . . 7  |-  ( ( ( n  -  1 )  e.  RR  /\  0  <_  ( n  - 
1 ) )  -> 
( log `  (
( n  -  1 )  +  1 ) )  <_  ( sqr `  ( n  -  1 ) ) )
3828, 36, 37syl2anc 667 . . . . . 6  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( log `  (
( n  -  1 )  +  1 ) )  <_  ( sqr `  ( n  -  1 ) ) )
3935, 38eqbrtrrd 4425 . . . . 5  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( log `  n
)  <_  ( sqr `  ( n  -  1 ) ) )
4019rpred 11341 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( sqr `  n
)  e.  RR )
4140, 25readdcld 9670 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( sqr `  n )  +  ( sqr `  ( n  -  1 ) ) )  e.  RR )
42 remulcl 9624 . . . . . . . . . . 11  |-  ( ( ( sqr `  n
)  e.  RR  /\  2  e.  RR )  ->  ( ( sqr `  n
)  x.  2 )  e.  RR )
4340, 14, 42sylancl 668 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( sqr `  n )  x.  2 )  e.  RR )
4440, 25resubcld 10047 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( sqr `  n )  -  ( sqr `  ( n  - 
1 ) ) )  e.  RR )
4526lem1d 10540 . . . . . . . . . . . 12  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( n  - 
1 )  <_  n
)
466rpge0d 11345 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  0  <_  n
)
4728, 36, 26, 46sqrtled 13488 . . . . . . . . . . . 12  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( n  -  1 )  <_  n 
<->  ( sqr `  (
n  -  1 ) )  <_  ( sqr `  n ) ) )
4845, 47mpbid 214 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( sqr `  (
n  -  1 ) )  <_  ( sqr `  n ) )
4940, 25subge0d 10203 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( 0  <_ 
( ( sqr `  n
)  -  ( sqr `  ( n  -  1 ) ) )  <->  ( sqr `  ( n  -  1 ) )  <_  ( sqr `  n ) ) )
5048, 49mpbird 236 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  0  <_  (
( sqr `  n
)  -  ( sqr `  ( n  -  1 ) ) ) )
5125, 40, 40, 48leadd2dd 10228 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( sqr `  n )  +  ( sqr `  ( n  -  1 ) ) )  <_  ( ( sqr `  n )  +  ( sqr `  n
) ) )
5219rpcnd 11343 . . . . . . . . . . . 12  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( sqr `  n
)  e.  CC )
5352times2d 10856 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( sqr `  n )  x.  2 )  =  ( ( sqr `  n )  +  ( sqr `  n
) ) )
5451, 53breqtrrd 4429 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( sqr `  n )  +  ( sqr `  ( n  -  1 ) ) )  <_  ( ( sqr `  n )  x.  2 ) )
5541, 43, 44, 50, 54lemul1ad 10546 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( ( sqr `  n )  +  ( sqr `  (
n  -  1 ) ) )  x.  (
( sqr `  n
)  -  ( sqr `  ( n  -  1 ) ) ) )  <_  ( ( ( sqr `  n )  x.  2 )  x.  ( ( sqr `  n
)  -  ( sqr `  ( n  -  1 ) ) ) ) )
5631sqsqrtd 13501 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( sqr `  n ) ^ 2 )  =  n )
57 subcl 9874 . . . . . . . . . . . . 13  |-  ( ( n  e.  CC  /\  1  e.  CC )  ->  ( n  -  1 )  e.  CC )
5831, 32, 57sylancl 668 . . . . . . . . . . . 12  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( n  - 
1 )  e.  CC )
5958sqsqrtd 13501 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( sqr `  ( n  -  1 ) ) ^ 2 )  =  ( n  -  1 ) )
6056, 59oveq12d 6308 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( ( sqr `  n ) ^ 2 )  -  ( ( sqr `  (
n  -  1 ) ) ^ 2 ) )  =  ( n  -  ( n  - 
1 ) ) )
6116rpcnd 11343 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( sqr `  (
n  -  1 ) )  e.  CC )
62 subsq 12382 . . . . . . . . . . 11  |-  ( ( ( sqr `  n
)  e.  CC  /\  ( sqr `  ( n  -  1 ) )  e.  CC )  -> 
( ( ( sqr `  n ) ^ 2 )  -  ( ( sqr `  ( n  -  1 ) ) ^ 2 ) )  =  ( ( ( sqr `  n )  +  ( sqr `  (
n  -  1 ) ) )  x.  (
( sqr `  n
)  -  ( sqr `  ( n  -  1 ) ) ) ) )
6352, 61, 62syl2anc 667 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( ( sqr `  n ) ^ 2 )  -  ( ( sqr `  (
n  -  1 ) ) ^ 2 ) )  =  ( ( ( sqr `  n
)  +  ( sqr `  ( n  -  1 ) ) )  x.  ( ( sqr `  n
)  -  ( sqr `  ( n  -  1 ) ) ) ) )
64 nncan 9903 . . . . . . . . . . 11  |-  ( ( n  e.  CC  /\  1  e.  CC )  ->  ( n  -  (
n  -  1 ) )  =  1 )
6531, 32, 64sylancl 668 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( n  -  ( n  -  1
) )  =  1 )
6660, 63, 653eqtr3d 2493 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( ( sqr `  n )  +  ( sqr `  (
n  -  1 ) ) )  x.  (
( sqr `  n
)  -  ( sqr `  ( n  -  1 ) ) ) )  =  1 )
67 2cn 10680 . . . . . . . . . . 11  |-  2  e.  CC
6867a1i 11 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  2  e.  CC )
6944recnd 9669 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( sqr `  n )  -  ( sqr `  ( n  - 
1 ) ) )  e.  CC )
7052, 68, 69mulassd 9666 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( ( sqr `  n )  x.  2 )  x.  ( ( sqr `  n
)  -  ( sqr `  ( n  -  1 ) ) ) )  =  ( ( sqr `  n )  x.  (
2  x.  ( ( sqr `  n )  -  ( sqr `  (
n  -  1 ) ) ) ) ) )
7155, 66, 703brtr3d 4432 . . . . . . . 8  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  1  <_  (
( sqr `  n
)  x.  ( 2  x.  ( ( sqr `  n )  -  ( sqr `  ( n  - 
1 ) ) ) ) ) )
72 1red 9658 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  1  e.  RR )
73 remulcl 9624 . . . . . . . . . . 11  |-  ( ( 2  e.  RR  /\  ( ( sqr `  n
)  -  ( sqr `  ( n  -  1 ) ) )  e.  RR )  ->  (
2  x.  ( ( sqr `  n )  -  ( sqr `  (
n  -  1 ) ) ) )  e.  RR )
7414, 44, 73sylancr 669 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( 2  x.  ( ( sqr `  n
)  -  ( sqr `  ( n  -  1 ) ) ) )  e.  RR )
7540, 74remulcld 9671 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( sqr `  n )  x.  (
2  x.  ( ( sqr `  n )  -  ( sqr `  (
n  -  1 ) ) ) ) )  e.  RR )
7672, 75, 16lemul1d 11381 . . . . . . . 8  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( 1  <_ 
( ( sqr `  n
)  x.  ( 2  x.  ( ( sqr `  n )  -  ( sqr `  ( n  - 
1 ) ) ) ) )  <->  ( 1  x.  ( sqr `  (
n  -  1 ) ) )  <_  (
( ( sqr `  n
)  x.  ( 2  x.  ( ( sqr `  n )  -  ( sqr `  ( n  - 
1 ) ) ) ) )  x.  ( sqr `  ( n  - 
1 ) ) ) ) )
7771, 76mpbid 214 . . . . . . 7  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( 1  x.  ( sqr `  (
n  -  1 ) ) )  <_  (
( ( sqr `  n
)  x.  ( 2  x.  ( ( sqr `  n )  -  ( sqr `  ( n  - 
1 ) ) ) ) )  x.  ( sqr `  ( n  - 
1 ) ) ) )
7861mulid2d 9661 . . . . . . 7  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( 1  x.  ( sqr `  (
n  -  1 ) ) )  =  ( sqr `  ( n  -  1 ) ) )
7974recnd 9669 . . . . . . . 8  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( 2  x.  ( ( sqr `  n
)  -  ( sqr `  ( n  -  1 ) ) ) )  e.  CC )
8052, 79, 61mul32d 9843 . . . . . . 7  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( ( sqr `  n )  x.  ( 2  x.  ( ( sqr `  n
)  -  ( sqr `  ( n  -  1 ) ) ) ) )  x.  ( sqr `  ( n  -  1 ) ) )  =  ( ( ( sqr `  n )  x.  ( sqr `  ( n  - 
1 ) ) )  x.  ( 2  x.  ( ( sqr `  n
)  -  ( sqr `  ( n  -  1 ) ) ) ) ) )
8177, 78, 803brtr3d 4432 . . . . . 6  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( sqr `  (
n  -  1 ) )  <_  ( (
( sqr `  n
)  x.  ( sqr `  ( n  -  1 ) ) )  x.  ( 2  x.  (
( sqr `  n
)  -  ( sqr `  ( n  -  1 ) ) ) ) ) )
82 remsqsqrt 13320 . . . . . . . . . . 11  |-  ( ( n  e.  RR  /\  0  <_  n )  -> 
( ( sqr `  n
)  x.  ( sqr `  n ) )  =  n )
8326, 46, 82syl2anc 667 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( sqr `  n )  x.  ( sqr `  n ) )  =  n )
84 remsqsqrt 13320 . . . . . . . . . . 11  |-  ( ( ( n  -  1 )  e.  RR  /\  0  <_  ( n  - 
1 ) )  -> 
( ( sqr `  (
n  -  1 ) )  x.  ( sqr `  ( n  -  1 ) ) )  =  ( n  -  1 ) )
8528, 36, 84syl2anc 667 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( sqr `  ( n  -  1 ) )  x.  ( sqr `  ( n  - 
1 ) ) )  =  ( n  - 
1 ) )
8683, 85oveq12d 6308 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( ( sqr `  n )  x.  ( sqr `  n
) )  x.  (
( sqr `  (
n  -  1 ) )  x.  ( sqr `  ( n  -  1 ) ) ) )  =  ( n  x.  ( n  -  1 ) ) )
8752, 52, 61, 61mul4d 9845 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( ( sqr `  n )  x.  ( sqr `  n
) )  x.  (
( sqr `  (
n  -  1 ) )  x.  ( sqr `  ( n  -  1 ) ) ) )  =  ( ( ( sqr `  n )  x.  ( sqr `  (
n  -  1 ) ) )  x.  (
( sqr `  n
)  x.  ( sqr `  ( n  -  1 ) ) ) ) )
8886, 87eqtr3d 2487 . . . . . . . 8  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( n  x.  ( n  -  1 ) )  =  ( ( ( sqr `  n
)  x.  ( sqr `  ( n  -  1 ) ) )  x.  ( ( sqr `  n
)  x.  ( sqr `  ( n  -  1 ) ) ) ) )
8916rpcnne0d 11350 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( sqr `  ( n  -  1 ) )  e.  CC  /\  ( sqr `  (
n  -  1 ) )  =/=  0 ) )
9019rpcnne0d 11350 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( sqr `  n )  e.  CC  /\  ( sqr `  n
)  =/=  0 ) )
91 divsubdiv 10323 . . . . . . . . . 10  |-  ( ( ( 2  e.  CC  /\  2  e.  CC )  /\  ( ( ( sqr `  ( n  -  1 ) )  e.  CC  /\  ( sqr `  ( n  - 
1 ) )  =/=  0 )  /\  (
( sqr `  n
)  e.  CC  /\  ( sqr `  n )  =/=  0 ) ) )  ->  ( (
2  /  ( sqr `  ( n  -  1 ) ) )  -  ( 2  /  ( sqr `  n ) ) )  =  ( ( ( 2  x.  ( sqr `  n ) )  -  ( 2  x.  ( sqr `  (
n  -  1 ) ) ) )  / 
( ( sqr `  (
n  -  1 ) )  x.  ( sqr `  n ) ) ) )
9268, 68, 89, 90, 91syl22anc 1269 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( 2  /  ( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  n ) ) )  =  ( ( ( 2  x.  ( sqr `  n ) )  -  ( 2  x.  ( sqr `  ( n  - 
1 ) ) ) )  /  ( ( sqr `  ( n  -  1 ) )  x.  ( sqr `  n
) ) ) )
9368, 52, 61subdid 10074 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( 2  x.  ( ( sqr `  n
)  -  ( sqr `  ( n  -  1 ) ) ) )  =  ( ( 2  x.  ( sqr `  n
) )  -  (
2  x.  ( sqr `  ( n  -  1 ) ) ) ) )
9452, 61mulcomd 9664 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( sqr `  n )  x.  ( sqr `  ( n  - 
1 ) ) )  =  ( ( sqr `  ( n  -  1 ) )  x.  ( sqr `  n ) ) )
9593, 94oveq12d 6308 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( 2  x.  ( ( sqr `  n )  -  ( sqr `  ( n  - 
1 ) ) ) )  /  ( ( sqr `  n )  x.  ( sqr `  (
n  -  1 ) ) ) )  =  ( ( ( 2  x.  ( sqr `  n
) )  -  (
2  x.  ( sqr `  ( n  -  1 ) ) ) )  /  ( ( sqr `  ( n  -  1 ) )  x.  ( sqr `  n ) ) ) )
9692, 95eqtr4d 2488 . . . . . . . 8  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( 2  /  ( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  n ) ) )  =  ( ( 2  x.  ( ( sqr `  n )  -  ( sqr `  ( n  - 
1 ) ) ) )  /  ( ( sqr `  n )  x.  ( sqr `  (
n  -  1 ) ) ) ) )
9788, 96oveq12d 6308 . . . . . . 7  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( n  x.  ( n  - 
1 ) )  x.  ( ( 2  / 
( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  n ) ) ) )  =  ( ( ( ( sqr `  n
)  x.  ( sqr `  ( n  -  1 ) ) )  x.  ( ( sqr `  n
)  x.  ( sqr `  ( n  -  1 ) ) ) )  x.  ( ( 2  x.  ( ( sqr `  n )  -  ( sqr `  ( n  - 
1 ) ) ) )  /  ( ( sqr `  n )  x.  ( sqr `  (
n  -  1 ) ) ) ) ) )
9852, 61mulcld 9663 . . . . . . . 8  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( sqr `  n )  x.  ( sqr `  ( n  - 
1 ) ) )  e.  CC )
9919, 16rpmulcld 11357 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( sqr `  n )  x.  ( sqr `  ( n  - 
1 ) ) )  e.  RR+ )
10074, 99rerpdivcld 11369 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( 2  x.  ( ( sqr `  n )  -  ( sqr `  ( n  - 
1 ) ) ) )  /  ( ( sqr `  n )  x.  ( sqr `  (
n  -  1 ) ) ) )  e.  RR )
101100recnd 9669 . . . . . . . 8  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( 2  x.  ( ( sqr `  n )  -  ( sqr `  ( n  - 
1 ) ) ) )  /  ( ( sqr `  n )  x.  ( sqr `  (
n  -  1 ) ) ) )  e.  CC )
10298, 98, 101mulassd 9666 . . . . . . 7  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( ( ( sqr `  n
)  x.  ( sqr `  ( n  -  1 ) ) )  x.  ( ( sqr `  n
)  x.  ( sqr `  ( n  -  1 ) ) ) )  x.  ( ( 2  x.  ( ( sqr `  n )  -  ( sqr `  ( n  - 
1 ) ) ) )  /  ( ( sqr `  n )  x.  ( sqr `  (
n  -  1 ) ) ) ) )  =  ( ( ( sqr `  n )  x.  ( sqr `  (
n  -  1 ) ) )  x.  (
( ( sqr `  n
)  x.  ( sqr `  ( n  -  1 ) ) )  x.  ( ( 2  x.  ( ( sqr `  n
)  -  ( sqr `  ( n  -  1 ) ) ) )  /  ( ( sqr `  n )  x.  ( sqr `  ( n  - 
1 ) ) ) ) ) ) )
10399rpne0d 11346 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( sqr `  n )  x.  ( sqr `  ( n  - 
1 ) ) )  =/=  0 )
10479, 98, 103divcan2d 10385 . . . . . . . 8  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( ( sqr `  n )  x.  ( sqr `  (
n  -  1 ) ) )  x.  (
( 2  x.  (
( sqr `  n
)  -  ( sqr `  ( n  -  1 ) ) ) )  /  ( ( sqr `  n )  x.  ( sqr `  ( n  - 
1 ) ) ) ) )  =  ( 2  x.  ( ( sqr `  n )  -  ( sqr `  (
n  -  1 ) ) ) ) )
105104oveq2d 6306 . . . . . . 7  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( ( sqr `  n )  x.  ( sqr `  (
n  -  1 ) ) )  x.  (
( ( sqr `  n
)  x.  ( sqr `  ( n  -  1 ) ) )  x.  ( ( 2  x.  ( ( sqr `  n
)  -  ( sqr `  ( n  -  1 ) ) ) )  /  ( ( sqr `  n )  x.  ( sqr `  ( n  - 
1 ) ) ) ) ) )  =  ( ( ( sqr `  n )  x.  ( sqr `  ( n  - 
1 ) ) )  x.  ( 2  x.  ( ( sqr `  n
)  -  ( sqr `  ( n  -  1 ) ) ) ) ) )
10697, 102, 1053eqtrd 2489 . . . . . 6  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( n  x.  ( n  - 
1 ) )  x.  ( ( 2  / 
( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  n ) ) ) )  =  ( ( ( sqr `  n
)  x.  ( sqr `  ( n  -  1 ) ) )  x.  ( 2  x.  (
( sqr `  n
)  -  ( sqr `  ( n  -  1 ) ) ) ) ) )
10781, 106breqtrrd 4429 . . . . 5  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( sqr `  (
n  -  1 ) )  <_  ( (
n  x.  ( n  -  1 ) )  x.  ( ( 2  /  ( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  n ) ) ) ) )
1087, 25, 30, 39, 107letrd 9792 . . . 4  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( log `  n
)  <_  ( (
n  x.  ( n  -  1 ) )  x.  ( ( 2  /  ( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  n ) ) ) ) )
10911nngt0d 10653 . . . . 5  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  0  <  (
n  x.  ( n  -  1 ) ) )
110 ledivmul 10481 . . . . 5  |-  ( ( ( log `  n
)  e.  RR  /\  ( ( 2  / 
( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  n ) ) )  e.  RR  /\  (
( n  x.  (
n  -  1 ) )  e.  RR  /\  0  <  ( n  x.  ( n  -  1 ) ) ) )  ->  ( ( ( log `  n )  /  ( n  x.  ( n  -  1 ) ) )  <_ 
( ( 2  / 
( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  n ) ) )  <-> 
( log `  n
)  <_  ( (
n  x.  ( n  -  1 ) )  x.  ( ( 2  /  ( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  n ) ) ) ) ) )
1117, 22, 29, 109, 110syl112anc 1272 . . . 4  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( ( log `  n )  /  ( n  x.  ( n  -  1 ) ) )  <_ 
( ( 2  / 
( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  n ) ) )  <-> 
( log `  n
)  <_  ( (
n  x.  ( n  -  1 ) )  x.  ( ( 2  /  ( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  n ) ) ) ) ) )
112108, 111mpbird 236 . . 3  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( log `  n )  /  (
n  x.  ( n  -  1 ) ) )  <_  ( (
2  /  ( sqr `  ( n  -  1 ) ) )  -  ( 2  /  ( sqr `  n ) ) ) )
1131, 12, 22, 112fsumle 13859 . 2  |-  ( A  e.  NN  ->  sum_ n  e.  ( 2 ... A
) ( ( log `  n )  /  (
n  x.  ( n  -  1 ) ) )  <_  sum_ n  e.  ( 2 ... A
) ( ( 2  /  ( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  n ) ) ) )
114 oveq1 6297 . . . . . . 7  |-  ( k  =  n  ->  (
k  -  1 )  =  ( n  - 
1 ) )
115114fveq2d 5869 . . . . . 6  |-  ( k  =  n  ->  ( sqr `  ( k  - 
1 ) )  =  ( sqr `  (
n  -  1 ) ) )
116115oveq2d 6306 . . . . 5  |-  ( k  =  n  ->  (
2  /  ( sqr `  ( k  -  1 ) ) )  =  ( 2  /  ( sqr `  ( n  - 
1 ) ) ) )
117 oveq1 6297 . . . . . . 7  |-  ( k  =  ( n  + 
1 )  ->  (
k  -  1 )  =  ( ( n  +  1 )  - 
1 ) )
118117fveq2d 5869 . . . . . 6  |-  ( k  =  ( n  + 
1 )  ->  ( sqr `  ( k  - 
1 ) )  =  ( sqr `  (
( n  +  1 )  -  1 ) ) )
119118oveq2d 6306 . . . . 5  |-  ( k  =  ( n  + 
1 )  ->  (
2  /  ( sqr `  ( k  -  1 ) ) )  =  ( 2  /  ( sqr `  ( ( n  +  1 )  - 
1 ) ) ) )
120 oveq1 6297 . . . . . . . . . 10  |-  ( k  =  2  ->  (
k  -  1 )  =  ( 2  -  1 ) )
121 2m1e1 10724 . . . . . . . . . 10  |-  ( 2  -  1 )  =  1
122120, 121syl6eq 2501 . . . . . . . . 9  |-  ( k  =  2  ->  (
k  -  1 )  =  1 )
123122fveq2d 5869 . . . . . . . 8  |-  ( k  =  2  ->  ( sqr `  ( k  - 
1 ) )  =  ( sqr `  1
) )
124 sqrt1 13335 . . . . . . . 8  |-  ( sqr `  1 )  =  1
125123, 124syl6eq 2501 . . . . . . 7  |-  ( k  =  2  ->  ( sqr `  ( k  - 
1 ) )  =  1 )
126125oveq2d 6306 . . . . . 6  |-  ( k  =  2  ->  (
2  /  ( sqr `  ( k  -  1 ) ) )  =  ( 2  /  1
) )
12767div1i 10335 . . . . . 6  |-  ( 2  /  1 )  =  2
128126, 127syl6eq 2501 . . . . 5  |-  ( k  =  2  ->  (
2  /  ( sqr `  ( k  -  1 ) ) )  =  2 )
129 oveq1 6297 . . . . . . 7  |-  ( k  =  ( A  + 
1 )  ->  (
k  -  1 )  =  ( ( A  +  1 )  - 
1 ) )
130129fveq2d 5869 . . . . . 6  |-  ( k  =  ( A  + 
1 )  ->  ( sqr `  ( k  - 
1 ) )  =  ( sqr `  (
( A  +  1 )  -  1 ) ) )
131130oveq2d 6306 . . . . 5  |-  ( k  =  ( A  + 
1 )  ->  (
2  /  ( sqr `  ( k  -  1 ) ) )  =  ( 2  /  ( sqr `  ( ( A  +  1 )  - 
1 ) ) ) )
132 nnz 10959 . . . . 5  |-  ( A  e.  NN  ->  A  e.  ZZ )
133 eluzp1p1 11184 . . . . . . 7  |-  ( A  e.  ( ZZ>= `  1
)  ->  ( A  +  1 )  e.  ( ZZ>= `  ( 1  +  1 ) ) )
134 nnuz 11194 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
135133, 134eleq2s 2547 . . . . . 6  |-  ( A  e.  NN  ->  ( A  +  1 )  e.  ( ZZ>= `  (
1  +  1 ) ) )
136 df-2 10668 . . . . . . 7  |-  2  =  ( 1  +  1 )
137136fveq2i 5868 . . . . . 6  |-  ( ZZ>= ` 
2 )  =  (
ZZ>= `  ( 1  +  1 ) )
138135, 137syl6eleqr 2540 . . . . 5  |-  ( A  e.  NN  ->  ( A  +  1 )  e.  ( ZZ>= `  2
) )
139 elfzuz 11796 . . . . . . . . . . 11  |-  ( k  e.  ( 2 ... ( A  +  1 ) )  ->  k  e.  ( ZZ>= `  2 )
)
140 uz2m1nn 11233 . . . . . . . . . . 11  |-  ( k  e.  ( ZZ>= `  2
)  ->  ( k  -  1 )  e.  NN )
141139, 140syl 17 . . . . . . . . . 10  |-  ( k  e.  ( 2 ... ( A  +  1 ) )  ->  (
k  -  1 )  e.  NN )
142141adantl 468 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  k  e.  ( 2 ... ( A  + 
1 ) ) )  ->  ( k  - 
1 )  e.  NN )
143142nnrpd 11339 . . . . . . . 8  |-  ( ( A  e.  NN  /\  k  e.  ( 2 ... ( A  + 
1 ) ) )  ->  ( k  - 
1 )  e.  RR+ )
144143rpsqrtcld 13473 . . . . . . 7  |-  ( ( A  e.  NN  /\  k  e.  ( 2 ... ( A  + 
1 ) ) )  ->  ( sqr `  (
k  -  1 ) )  e.  RR+ )
145 rerpdivcl 11330 . . . . . . 7  |-  ( ( 2  e.  RR  /\  ( sqr `  ( k  -  1 ) )  e.  RR+ )  ->  (
2  /  ( sqr `  ( k  -  1 ) ) )  e.  RR )
14614, 144, 145sylancr 669 . . . . . 6  |-  ( ( A  e.  NN  /\  k  e.  ( 2 ... ( A  + 
1 ) ) )  ->  ( 2  / 
( sqr `  (
k  -  1 ) ) )  e.  RR )
147146recnd 9669 . . . . 5  |-  ( ( A  e.  NN  /\  k  e.  ( 2 ... ( A  + 
1 ) ) )  ->  ( 2  / 
( sqr `  (
k  -  1 ) ) )  e.  CC )
148116, 119, 128, 131, 132, 138, 147telfsum 13864 . . . 4  |-  ( A  e.  NN  ->  sum_ n  e.  ( 2 ... A
) ( ( 2  /  ( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  ( ( n  + 
1 )  -  1 ) ) ) )  =  ( 2  -  ( 2  /  ( sqr `  ( ( A  +  1 )  - 
1 ) ) ) ) )
149 pncan 9881 . . . . . . . . 9  |-  ( ( n  e.  CC  /\  1  e.  CC )  ->  ( ( n  + 
1 )  -  1 )  =  n )
15031, 32, 149sylancl 668 . . . . . . . 8  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( n  +  1 )  - 
1 )  =  n )
151150fveq2d 5869 . . . . . . 7  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( sqr `  (
( n  +  1 )  -  1 ) )  =  ( sqr `  n ) )
152151oveq2d 6306 . . . . . 6  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( 2  / 
( sqr `  (
( n  +  1 )  -  1 ) ) )  =  ( 2  /  ( sqr `  n ) ) )
153152oveq2d 6306 . . . . 5  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( 2  /  ( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  ( ( n  + 
1 )  -  1 ) ) ) )  =  ( ( 2  /  ( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  n ) ) ) )
154153sumeq2dv 13769 . . . 4  |-  ( A  e.  NN  ->  sum_ n  e.  ( 2 ... A
) ( ( 2  /  ( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  ( ( n  + 
1 )  -  1 ) ) ) )  =  sum_ n  e.  ( 2 ... A ) ( ( 2  / 
( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  n ) ) ) )
155 nncn 10617 . . . . . . . 8  |-  ( A  e.  NN  ->  A  e.  CC )
156 pncan 9881 . . . . . . . 8  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( ( A  + 
1 )  -  1 )  =  A )
157155, 32, 156sylancl 668 . . . . . . 7  |-  ( A  e.  NN  ->  (
( A  +  1 )  -  1 )  =  A )
158157fveq2d 5869 . . . . . 6  |-  ( A  e.  NN  ->  ( sqr `  ( ( A  +  1 )  - 
1 ) )  =  ( sqr `  A
) )
159158oveq2d 6306 . . . . 5  |-  ( A  e.  NN  ->  (
2  /  ( sqr `  ( ( A  + 
1 )  -  1 ) ) )  =  ( 2  /  ( sqr `  A ) ) )
160159oveq2d 6306 . . . 4  |-  ( A  e.  NN  ->  (
2  -  ( 2  /  ( sqr `  (
( A  +  1 )  -  1 ) ) ) )  =  ( 2  -  (
2  /  ( sqr `  A ) ) ) )
161148, 154, 1603eqtr3d 2493 . . 3  |-  ( A  e.  NN  ->  sum_ n  e.  ( 2 ... A
) ( ( 2  /  ( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  n ) ) )  =  ( 2  -  ( 2  /  ( sqr `  A ) ) ) )
162 2rp 11307 . . . . . 6  |-  2  e.  RR+
163 nnrp 11311 . . . . . . 7  |-  ( A  e.  NN  ->  A  e.  RR+ )
164163rpsqrtcld 13473 . . . . . 6  |-  ( A  e.  NN  ->  ( sqr `  A )  e.  RR+ )
165 rpdivcl 11325 . . . . . 6  |-  ( ( 2  e.  RR+  /\  ( sqr `  A )  e.  RR+ )  ->  ( 2  /  ( sqr `  A
) )  e.  RR+ )
166162, 164, 165sylancr 669 . . . . 5  |-  ( A  e.  NN  ->  (
2  /  ( sqr `  A ) )  e.  RR+ )
167166rpge0d 11345 . . . 4  |-  ( A  e.  NN  ->  0  <_  ( 2  /  ( sqr `  A ) ) )
168166rpred 11341 . . . . 5  |-  ( A  e.  NN  ->  (
2  /  ( sqr `  A ) )  e.  RR )
169 subge02 10130 . . . . 5  |-  ( ( 2  e.  RR  /\  ( 2  /  ( sqr `  A ) )  e.  RR )  -> 
( 0  <_  (
2  /  ( sqr `  A ) )  <->  ( 2  -  ( 2  / 
( sqr `  A
) ) )  <_ 
2 ) )
17014, 168, 169sylancr 669 . . . 4  |-  ( A  e.  NN  ->  (
0  <_  ( 2  /  ( sqr `  A
) )  <->  ( 2  -  ( 2  / 
( sqr `  A
) ) )  <_ 
2 ) )
171167, 170mpbid 214 . . 3  |-  ( A  e.  NN  ->  (
2  -  ( 2  /  ( sqr `  A
) ) )  <_ 
2 )
172161, 171eqbrtrd 4423 . 2  |-  ( A  e.  NN  ->  sum_ n  e.  ( 2 ... A
) ( ( 2  /  ( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  n ) ) )  <_  2 )
17313, 23, 24, 113, 172letrd 9792 1  |-  ( A  e.  NN  ->  sum_ n  e.  ( 2 ... A
) ( ( log `  n )  /  (
n  x.  ( n  -  1 ) ) )  <_  2 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1444    e. wcel 1887    =/= wne 2622   class class class wbr 4402   ` cfv 5582  (class class class)co 6290   CCcc 9537   RRcr 9538   0cc0 9539   1c1 9540    + caddc 9542    x. cmul 9544    < clt 9675    <_ cle 9676    - cmin 9860    / cdiv 10269   NNcn 10609   2c2 10659   ZZ>=cuz 11159   RR+crp 11302   ...cfz 11784   ^cexp 12272   sqrcsqrt 13296   sum_csu 13752   logclog 23504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-inf2 8146  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617  ax-addf 9618  ax-mulf 9619
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-fal 1450  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-iin 4281  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-se 4794  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-isom 5591  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-of 6531  df-om 6693  df-1st 6793  df-2nd 6794  df-supp 6915  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-2o 7183  df-oadd 7186  df-er 7363  df-map 7474  df-pm 7475  df-ixp 7523  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-fsupp 7884  df-fi 7925  df-sup 7956  df-inf 7957  df-oi 8025  df-card 8373  df-cda 8598  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ioo 11639  df-ioc 11640  df-ico 11641  df-icc 11642  df-fz 11785  df-fzo 11916  df-fl 12028  df-mod 12097  df-seq 12214  df-exp 12273  df-fac 12460  df-bc 12488  df-hash 12516  df-shft 13130  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-limsup 13526  df-clim 13552  df-rlim 13553  df-sum 13753  df-ef 14121  df-sin 14123  df-cos 14124  df-tan 14125  df-pi 14126  df-struct 15123  df-ndx 15124  df-slot 15125  df-base 15126  df-sets 15127  df-ress 15128  df-plusg 15203  df-mulr 15204  df-starv 15205  df-sca 15206  df-vsca 15207  df-ip 15208  df-tset 15209  df-ple 15210  df-ds 15212  df-unif 15213  df-hom 15214  df-cco 15215  df-rest 15321  df-topn 15322  df-0g 15340  df-gsum 15341  df-topgen 15342  df-pt 15343  df-prds 15346  df-xrs 15400  df-qtop 15406  df-imas 15407  df-xps 15410  df-mre 15492  df-mrc 15493  df-acs 15495  df-mgm 16488  df-sgrp 16527  df-mnd 16537  df-submnd 16583  df-mulg 16676  df-cntz 16971  df-cmn 17432  df-psmet 18962  df-xmet 18963  df-met 18964  df-bl 18965  df-mopn 18966  df-fbas 18967  df-fg 18968  df-cnfld 18971  df-top 19921  df-bases 19922  df-topon 19923  df-topsp 19924  df-cld 20034  df-ntr 20035  df-cls 20036  df-nei 20114  df-lp 20152  df-perf 20153  df-cn 20243  df-cnp 20244  df-haus 20331  df-cmp 20402  df-tx 20577  df-hmeo 20770  df-fil 20861  df-fm 20953  df-flim 20954  df-flf 20955  df-xms 21335  df-ms 21336  df-tms 21337  df-cncf 21910  df-limc 22821  df-dv 22822  df-log 23506  df-cxp 23507
This theorem is referenced by:  rplogsumlem2  24323
  Copyright terms: Public domain W3C validator