MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rphalflt Structured version   Unicode version

Theorem rphalflt 11242
Description: Half of a positive real is less than the original number. (Contributed by Mario Carneiro, 21-May-2014.)
Assertion
Ref Expression
rphalflt  |-  ( A  e.  RR+  ->  ( A  /  2 )  < 
A )

Proof of Theorem rphalflt
StepHypRef Expression
1 elrp 11218 . 2  |-  ( A  e.  RR+  <->  ( A  e.  RR  /\  0  < 
A ) )
2 halfpos 10765 . . 3  |-  ( A  e.  RR  ->  (
0  <  A  <->  ( A  /  2 )  < 
A ) )
32biimpa 484 . 2  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( A  /  2
)  <  A )
41, 3sylbi 195 1  |-  ( A  e.  RR+  ->  ( A  /  2 )  < 
A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1767   class class class wbr 4447  (class class class)co 6282   RRcr 9487   0cc0 9488    < clt 9624    / cdiv 10202   2c2 10581   RR+crp 11216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-po 4800  df-so 4801  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-2 10590  df-rp 11217
This theorem is referenced by:  rpnnen2lem11  13812  sqrt2irr  13836  metcnpi3  20781  cfilucfilOLD  20804  cfilucfil  20805  reperflem  21055  iccntr  21058  icccmplem2  21060  reconnlem2  21064  cnllycmp  21188  bcthlem5  21499  minveclem3  21576  ivthlem2  21596  lhop1lem  22146  dvcnvre  22152  aaliou  22465  aaliou2b  22468  cosordlem  22648  tanord1  22654  argregt0  22720  argrege0  22721  isosctrlem1  22877  asinsin  22948  asin1  22950  atan1  22984  lgsqrlem2  23342  lgsquadlem2  23355  lgsquadlem3  23356  2sqlem8  23372  chebbnd1lem2  23380  pntibnd  23503  pntlem3  23519  ubthlem1  25459  nmcexi  26618  lgamucov  28217  ftc1anc  29673  dstregt0  31040  stoweidlem62  31362  fourierdlem79  31486  isosctrlem1ALT  32814
  Copyright terms: Public domain W3C validator