MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpexp1i Structured version   Unicode version

Theorem rpexp1i 14114
Description: Relative primality passes to asymmetric powers. (Contributed by Stefan O'Rear, 27-Sep-2014.)
Assertion
Ref Expression
rpexp1i  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  M  e.  NN0 )  ->  (
( A  gcd  B
)  =  1  -> 
( ( A ^ M )  gcd  B
)  =  1 ) )

Proof of Theorem rpexp1i
StepHypRef Expression
1 elnn0 10793 . . 3  |-  ( M  e.  NN0  <->  ( M  e.  NN  \/  M  =  0 ) )
2 rpexp 14113 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  M  e.  NN )  ->  (
( ( A ^ M )  gcd  B
)  =  1  <->  ( A  gcd  B )  =  1 ) )
32biimprd 223 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  M  e.  NN )  ->  (
( A  gcd  B
)  =  1  -> 
( ( A ^ M )  gcd  B
)  =  1 ) )
433expa 1196 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  M  e.  NN )  ->  ( ( A  gcd  B )  =  1  ->  ( ( A ^ M )  gcd 
B )  =  1 ) )
5 simpr 461 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  M  =  0 )  ->  M  = 
0 )
65oveq2d 6298 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  M  =  0 )  ->  ( A ^ M )  =  ( A ^ 0 ) )
7 zcn 10865 . . . . . . . . . 10  |-  ( A  e.  ZZ  ->  A  e.  CC )
87ad2antrr 725 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  M  =  0 )  ->  A  e.  CC )
98exp0d 12266 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  M  =  0 )  ->  ( A ^ 0 )  =  1 )
106, 9eqtrd 2508 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  M  =  0 )  ->  ( A ^ M )  =  1 )
1110oveq1d 6297 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  M  =  0 )  ->  ( ( A ^ M )  gcd 
B )  =  ( 1  gcd  B ) )
12 1gcd 14027 . . . . . . 7  |-  ( B  e.  ZZ  ->  (
1  gcd  B )  =  1 )
1312ad2antlr 726 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  M  =  0 )  ->  ( 1  gcd  B )  =  1 )
1411, 13eqtrd 2508 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  M  =  0 )  ->  ( ( A ^ M )  gcd 
B )  =  1 )
1514a1d 25 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  M  =  0 )  ->  ( ( A  gcd  B )  =  1  ->  ( ( A ^ M )  gcd 
B )  =  1 ) )
164, 15jaodan 783 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( M  e.  NN  \/  M  =  0 ) )  -> 
( ( A  gcd  B )  =  1  -> 
( ( A ^ M )  gcd  B
)  =  1 ) )
171, 16sylan2b 475 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  M  e.  NN0 )  ->  ( ( A  gcd  B )  =  1  ->  ( ( A ^ M )  gcd 
B )  =  1 ) )
18173impa 1191 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  M  e.  NN0 )  ->  (
( A  gcd  B
)  =  1  -> 
( ( A ^ M )  gcd  B
)  =  1 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767  (class class class)co 6282   CCcc 9486   0cc0 9488   1c1 9489   NNcn 10532   NN0cn0 10791   ZZcz 10860   ^cexp 12129    gcd cgcd 13996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-2o 7128  df-oadd 7131  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-sup 7897  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11079  df-rp 11217  df-fz 11669  df-fl 11893  df-mod 11960  df-seq 12071  df-exp 12130  df-cj 12889  df-re 12890  df-im 12891  df-sqrt 13025  df-abs 13026  df-dvds 13841  df-gcd 13997  df-prm 14070
This theorem is referenced by:  rpexp12i  14115  gexexlem  16648  ablfac1lem  16906  ablfac1eu  16911  pgpfac1lem2  16913  perfectlem1  23229  perfectlem2  23230  rpvmasumlem  23397  dchrisum0flblem2  23419
  Copyright terms: Public domain W3C validator