MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rollelem Structured version   Unicode version

Theorem rollelem 21361
Description: Lemma for rolle 21362. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
rolle.a  |-  ( ph  ->  A  e.  RR )
rolle.b  |-  ( ph  ->  B  e.  RR )
rolle.lt  |-  ( ph  ->  A  <  B )
rolle.f  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> RR ) )
rolle.d  |-  ( ph  ->  dom  ( RR  _D  F )  =  ( A (,) B ) )
rolle.r  |-  ( ph  ->  A. y  e.  ( A [,] B ) ( F `  y
)  <_  ( F `  U ) )
rolle.u  |-  ( ph  ->  U  e.  ( A [,] B ) )
rolle.n  |-  ( ph  ->  -.  U  e.  { A ,  B }
)
Assertion
Ref Expression
rollelem  |-  ( ph  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  0 )
Distinct variable groups:    x, y, A    ph, x, y    x, B, y    x, F, y   
x, U, y

Proof of Theorem rollelem
StepHypRef Expression
1 rolle.n . . 3  |-  ( ph  ->  -.  U  e.  { A ,  B }
)
2 rolle.u . . . . . 6  |-  ( ph  ->  U  e.  ( A [,] B ) )
3 rolle.a . . . . . . . 8  |-  ( ph  ->  A  e.  RR )
43rexrd 9429 . . . . . . 7  |-  ( ph  ->  A  e.  RR* )
5 rolle.b . . . . . . . 8  |-  ( ph  ->  B  e.  RR )
65rexrd 9429 . . . . . . 7  |-  ( ph  ->  B  e.  RR* )
7 rolle.lt . . . . . . . 8  |-  ( ph  ->  A  <  B )
83, 5, 7ltled 9518 . . . . . . 7  |-  ( ph  ->  A  <_  B )
9 prunioo 11410 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  (
( A (,) B
)  u.  { A ,  B } )  =  ( A [,] B
) )
104, 6, 8, 9syl3anc 1213 . . . . . 6  |-  ( ph  ->  ( ( A (,) B )  u.  { A ,  B }
)  =  ( A [,] B ) )
112, 10eleqtrrd 2518 . . . . 5  |-  ( ph  ->  U  e.  ( ( A (,) B )  u.  { A ,  B } ) )
12 elun 3494 . . . . 5  |-  ( U  e.  ( ( A (,) B )  u. 
{ A ,  B } )  <->  ( U  e.  ( A (,) B
)  \/  U  e. 
{ A ,  B } ) )
1311, 12sylib 196 . . . 4  |-  ( ph  ->  ( U  e.  ( A (,) B )  \/  U  e.  { A ,  B }
) )
1413ord 377 . . 3  |-  ( ph  ->  ( -.  U  e.  ( A (,) B
)  ->  U  e.  { A ,  B }
) )
151, 14mt3d 125 . 2  |-  ( ph  ->  U  e.  ( A (,) B ) )
16 rolle.f . . . 4  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> RR ) )
17 cncff 20369 . . . 4  |-  ( F  e.  ( ( A [,] B ) -cn-> RR )  ->  F :
( A [,] B
) --> RR )
1816, 17syl 16 . . 3  |-  ( ph  ->  F : ( A [,] B ) --> RR )
19 iccssre 11373 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
203, 5, 19syl2anc 656 . . 3  |-  ( ph  ->  ( A [,] B
)  C_  RR )
21 ioossicc 11377 . . . 4  |-  ( A (,) B )  C_  ( A [,] B )
2221a1i 11 . . 3  |-  ( ph  ->  ( A (,) B
)  C_  ( A [,] B ) )
23 rolle.d . . . 4  |-  ( ph  ->  dom  ( RR  _D  F )  =  ( A (,) B ) )
2415, 23eleqtrrd 2518 . . 3  |-  ( ph  ->  U  e.  dom  ( RR  _D  F ) )
25 rolle.r . . . 4  |-  ( ph  ->  A. y  e.  ( A [,] B ) ( F `  y
)  <_  ( F `  U ) )
26 ssralv 3413 . . . 4  |-  ( ( A (,) B ) 
C_  ( A [,] B )  ->  ( A. y  e.  ( A [,] B ) ( F `  y )  <_  ( F `  U )  ->  A. y  e.  ( A (,) B
) ( F `  y )  <_  ( F `  U )
) )
2722, 25, 26sylc 60 . . 3  |-  ( ph  ->  A. y  e.  ( A (,) B ) ( F `  y
)  <_  ( F `  U ) )
2818, 20, 15, 22, 24, 27dvferm 21360 . 2  |-  ( ph  ->  ( ( RR  _D  F ) `  U
)  =  0 )
29 fveq2 5688 . . . 4  |-  ( x  =  U  ->  (
( RR  _D  F
) `  x )  =  ( ( RR 
_D  F ) `  U ) )
3029eqeq1d 2449 . . 3  |-  ( x  =  U  ->  (
( ( RR  _D  F ) `  x
)  =  0  <->  (
( RR  _D  F
) `  U )  =  0 ) )
3130rspcev 3070 . 2  |-  ( ( U  e.  ( A (,) B )  /\  ( ( RR  _D  F ) `  U
)  =  0 )  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  0 )
3215, 28, 31syl2anc 656 1  |-  ( ph  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  0 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 368    = wceq 1364    e. wcel 1761   A.wral 2713   E.wrex 2714    u. cun 3323    C_ wss 3325   {cpr 3876   class class class wbr 4289   dom cdm 4836   -->wf 5411   ` cfv 5415  (class class class)co 6090   RRcr 9277   0cc0 9278   RR*cxr 9413    < clt 9414    <_ cle 9415   (,)cioo 11296   [,]cicc 11299   -cn->ccncf 20352    _D cdv 21238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-oadd 6920  df-er 7097  df-map 7212  df-pm 7213  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-fi 7657  df-sup 7687  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-10 10384  df-n0 10576  df-z 10643  df-dec 10752  df-uz 10858  df-q 10950  df-rp 10988  df-xneg 11085  df-xadd 11086  df-xmul 11087  df-ioo 11300  df-ico 11302  df-icc 11303  df-fz 11434  df-seq 11803  df-exp 11862  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-plusg 14247  df-mulr 14248  df-starv 14249  df-tset 14253  df-ple 14254  df-ds 14256  df-unif 14257  df-rest 14357  df-topn 14358  df-topgen 14378  df-psmet 17709  df-xmet 17710  df-met 17711  df-bl 17712  df-mopn 17713  df-fbas 17714  df-fg 17715  df-cnfld 17719  df-top 18403  df-bases 18405  df-topon 18406  df-topsp 18407  df-cld 18523  df-ntr 18524  df-cls 18525  df-nei 18602  df-lp 18640  df-perf 18641  df-cn 18731  df-cnp 18732  df-haus 18819  df-fil 19319  df-fm 19411  df-flim 19412  df-flf 19413  df-xms 19795  df-ms 19796  df-cncf 20354  df-limc 21241  df-dv 21242
This theorem is referenced by:  rolle  21362
  Copyright terms: Public domain W3C validator