MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rolle Structured version   Unicode version

Theorem rolle 22557
Description: Rolle's theorem. If  F is a real continuous function on  [ A ,  B ] which is differentiable on  ( A ,  B
), and  F ( A )  =  F ( B ), then there is some  x  e.  ( A ,  B ) such that  ( RR  _D  F ) `  x  =  0. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
rolle.a  |-  ( ph  ->  A  e.  RR )
rolle.b  |-  ( ph  ->  B  e.  RR )
rolle.lt  |-  ( ph  ->  A  <  B )
rolle.f  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> RR ) )
rolle.d  |-  ( ph  ->  dom  ( RR  _D  F )  =  ( A (,) B ) )
rolle.e  |-  ( ph  ->  ( F `  A
)  =  ( F `
 B ) )
Assertion
Ref Expression
rolle  |-  ( ph  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  0 )
Distinct variable groups:    x, A    ph, x    x, B    x, F

Proof of Theorem rolle
Dummy variables  u  t  v  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rolle.a . . . 4  |-  ( ph  ->  A  e.  RR )
2 rolle.b . . . 4  |-  ( ph  ->  B  e.  RR )
3 rolle.lt . . . . 5  |-  ( ph  ->  A  <  B )
41, 2, 3ltled 9722 . . . 4  |-  ( ph  ->  A  <_  B )
5 rolle.f . . . 4  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> RR ) )
61, 2, 4, 5evthicc 22037 . . 3  |-  ( ph  ->  ( E. u  e.  ( A [,] B
) A. y  e.  ( A [,] B
) ( F `  y )  <_  ( F `  u )  /\  E. v  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( F `  v
)  <_  ( F `  y ) ) )
7 reeanv 3022 . . 3  |-  ( E. u  e.  ( A [,] B ) E. v  e.  ( A [,] B ) ( A. y  e.  ( A [,] B ) ( F `  y
)  <_  ( F `  u )  /\  A. y  e.  ( A [,] B ) ( F `
 v )  <_ 
( F `  y
) )  <->  ( E. u  e.  ( A [,] B ) A. y  e.  ( A [,] B
) ( F `  y )  <_  ( F `  u )  /\  E. v  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( F `  v
)  <_  ( F `  y ) ) )
86, 7sylibr 212 . 2  |-  ( ph  ->  E. u  e.  ( A [,] B ) E. v  e.  ( A [,] B ) ( A. y  e.  ( A [,] B
) ( F `  y )  <_  ( F `  u )  /\  A. y  e.  ( A [,] B ) ( F `  v
)  <_  ( F `  y ) ) )
9 r19.26 2981 . . . 4  |-  ( A. y  e.  ( A [,] B ) ( ( F `  y )  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  <->  ( A. y  e.  ( A [,] B ) ( F `
 y )  <_ 
( F `  u
)  /\  A. y  e.  ( A [,] B
) ( F `  v )  <_  ( F `  y )
) )
101ad2antrr 723 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  A  e.  RR )
112ad2antrr 723 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  B  e.  RR )
123ad2antrr 723 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  A  <  B )
135ad2antrr 723 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  F  e.  ( ( A [,] B ) -cn-> RR ) )
14 rolle.d . . . . . . . . 9  |-  ( ph  ->  dom  ( RR  _D  F )  =  ( A (,) B ) )
1514ad2antrr 723 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  dom  ( RR  _D  F
)  =  ( A (,) B ) )
16 simpl 455 . . . . . . . . . . 11  |-  ( ( ( F `  y
)  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  ->  ( F `  y )  <_  ( F `  u
) )
1716ralimi 2847 . . . . . . . . . 10  |-  ( A. y  e.  ( A [,] B ) ( ( F `  y )  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  ->  A. y  e.  ( A [,] B
) ( F `  y )  <_  ( F `  u )
)
18 fveq2 5848 . . . . . . . . . . . 12  |-  ( y  =  t  ->  ( F `  y )  =  ( F `  t ) )
1918breq1d 4449 . . . . . . . . . . 11  |-  ( y  =  t  ->  (
( F `  y
)  <_  ( F `  u )  <->  ( F `  t )  <_  ( F `  u )
) )
2019cbvralv 3081 . . . . . . . . . 10  |-  ( A. y  e.  ( A [,] B ) ( F `
 y )  <_ 
( F `  u
)  <->  A. t  e.  ( A [,] B ) ( F `  t
)  <_  ( F `  u ) )
2117, 20sylib 196 . . . . . . . . 9  |-  ( A. y  e.  ( A [,] B ) ( ( F `  y )  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  ->  A. t  e.  ( A [,] B
) ( F `  t )  <_  ( F `  u )
)
2221ad2antrl 725 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  A. t  e.  ( A [,] B ) ( F `  t )  <_  ( F `  u ) )
23 simplrl 759 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  u  e.  ( A [,] B ) )
24 simprr 755 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  -.  u  e.  { A ,  B } )
2510, 11, 12, 13, 15, 22, 23, 24rollelem 22556 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F
) `  x )  =  0 )
2625expr 613 . . . . . 6  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  ->  ( -.  u  e.  { A ,  B }  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 ) )
271ad2antrr 723 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  ->  A  e.  RR )
282ad2antrr 723 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  ->  B  e.  RR )
293ad2antrr 723 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  ->  A  <  B )
30 cncff 21563 . . . . . . . . . . . . . . 15  |-  ( F  e.  ( ( A [,] B ) -cn-> RR )  ->  F :
( A [,] B
) --> RR )
315, 30syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  F : ( A [,] B ) --> RR )
3231ffvelrnda 6007 . . . . . . . . . . . . 13  |-  ( (
ph  /\  u  e.  ( A [,] B ) )  ->  ( F `  u )  e.  RR )
3332renegcld 9982 . . . . . . . . . . . 12  |-  ( (
ph  /\  u  e.  ( A [,] B ) )  ->  -u ( F `
 u )  e.  RR )
34 eqid 2454 . . . . . . . . . . . 12  |-  ( u  e.  ( A [,] B )  |->  -u ( F `  u )
)  =  ( u  e.  ( A [,] B )  |->  -u ( F `  u )
)
3533, 34fmptd 6031 . . . . . . . . . . 11  |-  ( ph  ->  ( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) : ( A [,] B
) --> RR )
36 ax-resscn 9538 . . . . . . . . . . . 12  |-  RR  C_  CC
37 ssid 3508 . . . . . . . . . . . . . . 15  |-  CC  C_  CC
38 cncfss 21569 . . . . . . . . . . . . . . 15  |-  ( ( RR  C_  CC  /\  CC  C_  CC )  ->  (
( A [,] B
) -cn-> RR )  C_  (
( A [,] B
) -cn-> CC ) )
3936, 37, 38mp2an 670 . . . . . . . . . . . . . 14  |-  ( ( A [,] B )
-cn-> RR )  C_  (
( A [,] B
) -cn-> CC )
4039, 5sseldi 3487 . . . . . . . . . . . . 13  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> CC ) )
4134negfcncf 21589 . . . . . . . . . . . . 13  |-  ( F  e.  ( ( A [,] B ) -cn-> CC )  ->  ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) )  e.  ( ( A [,] B ) -cn-> CC ) )
4240, 41syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) )  e.  ( ( A [,] B ) -cn-> CC ) )
43 cncffvrn 21568 . . . . . . . . . . . 12  |-  ( ( RR  C_  CC  /\  (
u  e.  ( A [,] B )  |->  -u ( F `  u ) )  e.  ( ( A [,] B )
-cn-> CC ) )  -> 
( ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) )  e.  ( ( A [,] B ) -cn-> RR )  <-> 
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) : ( A [,] B
) --> RR ) )
4436, 42, 43sylancr 661 . . . . . . . . . . 11  |-  ( ph  ->  ( ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) )  e.  ( ( A [,] B ) -cn-> RR )  <-> 
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) : ( A [,] B
) --> RR ) )
4535, 44mpbird 232 . . . . . . . . . 10  |-  ( ph  ->  ( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) )  e.  ( ( A [,] B ) -cn-> RR ) )
4645ad2antrr 723 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  -> 
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) )  e.  ( ( A [,] B ) -cn-> RR ) )
4736a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  RR  C_  CC )
48 iccssre 11609 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
491, 2, 48syl2anc 659 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A [,] B
)  C_  RR )
50 fss 5721 . . . . . . . . . . . . . . . . 17  |-  ( ( F : ( A [,] B ) --> RR 
/\  RR  C_  CC )  ->  F : ( A [,] B ) --> CC )
5131, 36, 50sylancl 660 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F : ( A [,] B ) --> CC )
5251ffvelrnda 6007 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  u  e.  ( A [,] B ) )  ->  ( F `  u )  e.  CC )
5352negcld 9909 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  u  e.  ( A [,] B ) )  ->  -u ( F `
 u )  e.  CC )
54 eqid 2454 . . . . . . . . . . . . . . 15  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
5554tgioo2 21474 . . . . . . . . . . . . . 14  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
56 iccntr 21492 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
571, 2, 56syl2anc 659 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
5847, 49, 53, 55, 54, 57dvmptntr 22540 . . . . . . . . . . . . 13  |-  ( ph  ->  ( RR  _D  (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) )  =  ( RR  _D  ( u  e.  ( A (,) B )  |->  -u ( F `  u )
) ) )
59 reelprrecn 9573 . . . . . . . . . . . . . . 15  |-  RR  e.  { RR ,  CC }
6059a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  RR  e.  { RR ,  CC } )
61 ioossicc 11613 . . . . . . . . . . . . . . . 16  |-  ( A (,) B )  C_  ( A [,] B )
6261sseli 3485 . . . . . . . . . . . . . . 15  |-  ( u  e.  ( A (,) B )  ->  u  e.  ( A [,] B
) )
6362, 52sylan2 472 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  u  e.  ( A (,) B ) )  ->  ( F `  u )  e.  CC )
64 fvex 5858 . . . . . . . . . . . . . . 15  |-  ( ( RR  _D  F ) `
 u )  e. 
_V
6564a1i 11 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  u  e.  ( A (,) B ) )  ->  ( ( RR  _D  F ) `  u )  e.  _V )
6631feqmptd 5901 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F  =  ( u  e.  ( A [,] B )  |->  ( F `
 u ) ) )
6766oveq2d 6286 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( RR  _D  F
)  =  ( RR 
_D  ( u  e.  ( A [,] B
)  |->  ( F `  u ) ) ) )
68 dvf 22477 . . . . . . . . . . . . . . . . 17  |-  ( RR 
_D  F ) : dom  ( RR  _D  F ) --> CC
6914feq2d 5700 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( RR  _D  F ) : dom  ( RR  _D  F
) --> CC  <->  ( RR  _D  F ) : ( A (,) B ) --> CC ) )
7068, 69mpbii 211 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( RR  _D  F
) : ( A (,) B ) --> CC )
7170feqmptd 5901 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( RR  _D  F
)  =  ( u  e.  ( A (,) B )  |->  ( ( RR  _D  F ) `
 u ) ) )
7247, 49, 52, 55, 54, 57dvmptntr 22540 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( RR  _D  (
u  e.  ( A [,] B )  |->  ( F `  u ) ) )  =  ( RR  _D  ( u  e.  ( A (,) B )  |->  ( F `
 u ) ) ) )
7367, 71, 723eqtr3rd 2504 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( RR  _D  (
u  e.  ( A (,) B )  |->  ( F `  u ) ) )  =  ( u  e.  ( A (,) B )  |->  ( ( RR  _D  F
) `  u )
) )
7460, 63, 65, 73dvmptneg 22535 . . . . . . . . . . . . 13  |-  ( ph  ->  ( RR  _D  (
u  e.  ( A (,) B )  |->  -u ( F `  u ) ) )  =  ( u  e.  ( A (,) B )  |->  -u ( ( RR  _D  F ) `  u
) ) )
7558, 74eqtrd 2495 . . . . . . . . . . . 12  |-  ( ph  ->  ( RR  _D  (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) )  =  ( u  e.  ( A (,) B )  |->  -u ( ( RR  _D  F ) `  u
) ) )
7675dmeqd 5194 . . . . . . . . . . 11  |-  ( ph  ->  dom  ( RR  _D  ( u  e.  ( A [,] B )  |->  -u ( F `  u ) ) )  =  dom  ( u  e.  ( A (,) B )  |->  -u ( ( RR  _D  F ) `  u
) ) )
77 dmmptg 5487 . . . . . . . . . . . 12  |-  ( A. u  e.  ( A (,) B ) -u (
( RR  _D  F
) `  u )  e.  _V  ->  dom  ( u  e.  ( A (,) B )  |->  -u (
( RR  _D  F
) `  u )
)  =  ( A (,) B ) )
78 negex 9809 . . . . . . . . . . . . 13  |-  -u (
( RR  _D  F
) `  u )  e.  _V
7978a1i 11 . . . . . . . . . . . 12  |-  ( u  e.  ( A (,) B )  ->  -u (
( RR  _D  F
) `  u )  e.  _V )
8077, 79mprg 2817 . . . . . . . . . . 11  |-  dom  (
u  e.  ( A (,) B )  |->  -u ( ( RR  _D  F ) `  u
) )  =  ( A (,) B )
8176, 80syl6eq 2511 . . . . . . . . . 10  |-  ( ph  ->  dom  ( RR  _D  ( u  e.  ( A [,] B )  |->  -u ( F `  u ) ) )  =  ( A (,) B ) )
8281ad2antrr 723 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  ->  dom  ( RR  _D  (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) )  =  ( A (,) B ) )
83 simpr 459 . . . . . . . . . . . . . 14  |-  ( ( ( F `  y
)  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  ->  ( F `  v )  <_  ( F `  y
) )
8431ad2antrr 723 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  F :
( A [,] B
) --> RR )
85 simplrr 760 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  v  e.  ( A [,] B ) )
8684, 85ffvelrnd 6008 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( F `  v )  e.  RR )
8731adantr 463 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( u  e.  ( A [,] B
)  /\  v  e.  ( A [,] B ) ) )  ->  F : ( A [,] B ) --> RR )
8887ffvelrnda 6007 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( F `  y )  e.  RR )
8986, 88lenegd 10127 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( ( F `  v )  <_  ( F `  y
)  <->  -u ( F `  y )  <_  -u ( F `  v )
) )
90 fveq2 5848 . . . . . . . . . . . . . . . . . . 19  |-  ( u  =  y  ->  ( F `  u )  =  ( F `  y ) )
9190negeqd 9805 . . . . . . . . . . . . . . . . . 18  |-  ( u  =  y  ->  -u ( F `  u )  =  -u ( F `  y ) )
92 negex 9809 . . . . . . . . . . . . . . . . . 18  |-  -u ( F `  y )  e.  _V
9391, 34, 92fvmpt 5931 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( A [,] B )  ->  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  y )  =  -u ( F `  y ) )
9493adantl 464 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) `  y )  =  -u ( F `  y ) )
95 fveq2 5848 . . . . . . . . . . . . . . . . . . 19  |-  ( u  =  v  ->  ( F `  u )  =  ( F `  v ) )
9695negeqd 9805 . . . . . . . . . . . . . . . . . 18  |-  ( u  =  v  ->  -u ( F `  u )  =  -u ( F `  v ) )
97 negex 9809 . . . . . . . . . . . . . . . . . 18  |-  -u ( F `  v )  e.  _V
9896, 34, 97fvmpt 5931 . . . . . . . . . . . . . . . . 17  |-  ( v  e.  ( A [,] B )  ->  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  v )  =  -u ( F `  v ) )
9985, 98syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) `  v )  =  -u ( F `  v ) )
10094, 99breq12d 4452 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  y )  <_  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  v )  <->  -u ( F `
 y )  <_  -u ( F `  v
) ) )
10189, 100bitr4d 256 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( ( F `  v )  <_  ( F `  y
)  <->  ( ( u  e.  ( A [,] B )  |->  -u ( F `  u )
) `  y )  <_  ( ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) ) `  v ) ) )
10283, 101syl5ib 219 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( (
( F `  y
)  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  ->  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  y )  <_  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  v ) ) )
103102ralimdva 2862 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( u  e.  ( A [,] B
)  /\  v  e.  ( A [,] B ) ) )  ->  ( A. y  e.  ( A [,] B ) ( ( F `  y
)  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  ->  A. y  e.  ( A [,] B
) ( ( u  e.  ( A [,] B )  |->  -u ( F `  u )
) `  y )  <_  ( ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) ) `  v ) ) )
104103imp 427 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  ->  A. y  e.  ( A [,] B
) ( ( u  e.  ( A [,] B )  |->  -u ( F `  u )
) `  y )  <_  ( ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) ) `  v ) )
105 fveq2 5848 . . . . . . . . . . . . 13  |-  ( y  =  t  ->  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  y )  =  ( ( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  t ) )
106105breq1d 4449 . . . . . . . . . . . 12  |-  ( y  =  t  ->  (
( ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) ) `  y )  <_  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  v )  <->  ( (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) `  t )  <_  ( ( u  e.  ( A [,] B )  |->  -u ( F `  u )
) `  v )
) )
107106cbvralv 3081 . . . . . . . . . . 11  |-  ( A. y  e.  ( A [,] B ) ( ( u  e.  ( A [,] B )  |->  -u ( F `  u ) ) `  y )  <_  ( ( u  e.  ( A [,] B )  |->  -u ( F `  u )
) `  v )  <->  A. t  e.  ( A [,] B ) ( ( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  t )  <_  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  v ) )
108104, 107sylib 196 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  ->  A. t  e.  ( A [,] B
) ( ( u  e.  ( A [,] B )  |->  -u ( F `  u )
) `  t )  <_  ( ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) ) `  v ) )
109108adantrr 714 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  ->  A. t  e.  ( A [,] B ) ( ( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  t )  <_  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  v ) )
110 simplrr 760 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  -> 
v  e.  ( A [,] B ) )
111 simprr 755 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  ->  -.  v  e.  { A ,  B } )
11227, 28, 29, 46, 82, 109, 110, 111rollelem 22556 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) ) `  x
)  =  0 )
11375fveq1d 5850 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( RR  _D  ( u  e.  ( A [,] B )  |->  -u ( F `  u ) ) ) `  x
)  =  ( ( u  e.  ( A (,) B )  |->  -u ( ( RR  _D  F ) `  u
) ) `  x
) )
114 fveq2 5848 . . . . . . . . . . . . . . 15  |-  ( u  =  x  ->  (
( RR  _D  F
) `  u )  =  ( ( RR 
_D  F ) `  x ) )
115114negeqd 9805 . . . . . . . . . . . . . 14  |-  ( u  =  x  ->  -u (
( RR  _D  F
) `  u )  =  -u ( ( RR 
_D  F ) `  x ) )
116 eqid 2454 . . . . . . . . . . . . . 14  |-  ( u  e.  ( A (,) B )  |->  -u (
( RR  _D  F
) `  u )
)  =  ( u  e.  ( A (,) B )  |->  -u (
( RR  _D  F
) `  u )
)
117 negex 9809 . . . . . . . . . . . . . 14  |-  -u (
( RR  _D  F
) `  x )  e.  _V
118115, 116, 117fvmpt 5931 . . . . . . . . . . . . 13  |-  ( x  e.  ( A (,) B )  ->  (
( u  e.  ( A (,) B ) 
|->  -u ( ( RR 
_D  F ) `  u ) ) `  x )  =  -u ( ( RR  _D  F ) `  x
) )
119113, 118sylan9eq 2515 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( ( RR  _D  ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) ) ) `
 x )  = 
-u ( ( RR 
_D  F ) `  x ) )
120119eqeq1d 2456 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( RR  _D  (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) ) `  x
)  =  0  <->  -u (
( RR  _D  F
) `  x )  =  0 ) )
12114eleq2d 2524 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( x  e.  dom  ( RR  _D  F
)  <->  x  e.  ( A (,) B ) ) )
122121biimpar 483 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  x  e.  dom  ( RR  _D  F
) )
12368ffvelrni 6006 . . . . . . . . . . . . 13  |-  ( x  e.  dom  ( RR 
_D  F )  -> 
( ( RR  _D  F ) `  x
)  e.  CC )
124122, 123syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( ( RR  _D  F ) `  x )  e.  CC )
125124negeq0d 9914 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( RR  _D  F
) `  x )  =  0  <->  -u ( ( RR  _D  F ) `
 x )  =  0 ) )
126120, 125bitr4d 256 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( RR  _D  (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) ) `  x
)  =  0  <->  (
( RR  _D  F
) `  x )  =  0 ) )
127126rexbidva 2962 . . . . . . . . 9  |-  ( ph  ->  ( E. x  e.  ( A (,) B
) ( ( RR 
_D  ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) ) ) `
 x )  =  0  <->  E. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  0 ) )
128127ad2antrr 723 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  -> 
( E. x  e.  ( A (,) B
) ( ( RR 
_D  ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) ) ) `
 x )  =  0  <->  E. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  0 ) )
129112, 128mpbid 210 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F
) `  x )  =  0 )
130129expr 613 . . . . . 6  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  ->  ( -.  v  e.  { A ,  B }  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 ) )
131 vex 3109 . . . . . . . . . . 11  |-  u  e. 
_V
132131elpr 4034 . . . . . . . . . 10  |-  ( u  e.  { A ,  B }  <->  ( u  =  A  \/  u  =  B ) )
133 fveq2 5848 . . . . . . . . . . . 12  |-  ( u  =  A  ->  ( F `  u )  =  ( F `  A ) )
134133a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  ( u  =  A  ->  ( F `  u )  =  ( F `  A ) ) )
135 rolle.e . . . . . . . . . . . . 13  |-  ( ph  ->  ( F `  A
)  =  ( F `
 B ) )
136135eqcomd 2462 . . . . . . . . . . . 12  |-  ( ph  ->  ( F `  B
)  =  ( F `
 A ) )
137 fveq2 5848 . . . . . . . . . . . . 13  |-  ( u  =  B  ->  ( F `  u )  =  ( F `  B ) )
138137eqeq1d 2456 . . . . . . . . . . . 12  |-  ( u  =  B  ->  (
( F `  u
)  =  ( F `
 A )  <->  ( F `  B )  =  ( F `  A ) ) )
139136, 138syl5ibrcom 222 . . . . . . . . . . 11  |-  ( ph  ->  ( u  =  B  ->  ( F `  u )  =  ( F `  A ) ) )
140134, 139jaod 378 . . . . . . . . . 10  |-  ( ph  ->  ( ( u  =  A  \/  u  =  B )  ->  ( F `  u )  =  ( F `  A ) ) )
141132, 140syl5bi 217 . . . . . . . . 9  |-  ( ph  ->  ( u  e.  { A ,  B }  ->  ( F `  u
)  =  ( F `
 A ) ) )
142 eleq1 2526 . . . . . . . . . . . 12  |-  ( u  =  v  ->  (
u  e.  { A ,  B }  <->  v  e.  { A ,  B }
) )
14395eqeq1d 2456 . . . . . . . . . . . 12  |-  ( u  =  v  ->  (
( F `  u
)  =  ( F `
 A )  <->  ( F `  v )  =  ( F `  A ) ) )
144142, 143imbi12d 318 . . . . . . . . . . 11  |-  ( u  =  v  ->  (
( u  e.  { A ,  B }  ->  ( F `  u
)  =  ( F `
 A ) )  <-> 
( v  e.  { A ,  B }  ->  ( F `  v
)  =  ( F `
 A ) ) ) )
145144imbi2d 314 . . . . . . . . . 10  |-  ( u  =  v  ->  (
( ph  ->  ( u  e.  { A ,  B }  ->  ( F `
 u )  =  ( F `  A
) ) )  <->  ( ph  ->  ( v  e.  { A ,  B }  ->  ( F `  v
)  =  ( F `
 A ) ) ) ) )
146145, 141chvarv 2019 . . . . . . . . 9  |-  ( ph  ->  ( v  e.  { A ,  B }  ->  ( F `  v
)  =  ( F `
 A ) ) )
147141, 146anim12d 561 . . . . . . . 8  |-  ( ph  ->  ( ( u  e. 
{ A ,  B }  /\  v  e.  { A ,  B }
)  ->  ( ( F `  u )  =  ( F `  A )  /\  ( F `  v )  =  ( F `  A ) ) ) )
148147ad2antrr 723 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  ->  (
( u  e.  { A ,  B }  /\  v  e.  { A ,  B } )  -> 
( ( F `  u )  =  ( F `  A )  /\  ( F `  v )  =  ( F `  A ) ) ) )
1491rexrd 9632 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A  e.  RR* )
1502rexrd 9632 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  B  e.  RR* )
151 lbicc2 11639 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  A  e.  ( A [,] B
) )
152149, 150, 4, 151syl3anc 1226 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A  e.  ( A [,] B ) )
15331, 152ffvelrnd 6008 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( F `  A
)  e.  RR )
154153ad2antrr 723 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( F `  A )  e.  RR )
15588, 154letri3d 9716 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( ( F `  y )  =  ( F `  A )  <->  ( ( F `  y )  <_  ( F `  A
)  /\  ( F `  A )  <_  ( F `  y )
) ) )
156 breq2 4443 . . . . . . . . . . . . . . 15  |-  ( ( F `  u )  =  ( F `  A )  ->  (
( F `  y
)  <_  ( F `  u )  <->  ( F `  y )  <_  ( F `  A )
) )
157 breq1 4442 . . . . . . . . . . . . . . 15  |-  ( ( F `  v )  =  ( F `  A )  ->  (
( F `  v
)  <_  ( F `  y )  <->  ( F `  A )  <_  ( F `  y )
) )
158156, 157bi2anan9 871 . . . . . . . . . . . . . 14  |-  ( ( ( F `  u
)  =  ( F `
 A )  /\  ( F `  v )  =  ( F `  A ) )  -> 
( ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  <->  ( ( F `
 y )  <_ 
( F `  A
)  /\  ( F `  A )  <_  ( F `  y )
) ) )
159158bibi2d 316 . . . . . . . . . . . . 13  |-  ( ( ( F `  u
)  =  ( F `
 A )  /\  ( F `  v )  =  ( F `  A ) )  -> 
( ( ( F `
 y )  =  ( F `  A
)  <->  ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  <->  ( ( F `  y )  =  ( F `  A )  <->  ( ( F `  y )  <_  ( F `  A
)  /\  ( F `  A )  <_  ( F `  y )
) ) ) )
160155, 159syl5ibrcom 222 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( (
( F `  u
)  =  ( F `
 A )  /\  ( F `  v )  =  ( F `  A ) )  -> 
( ( F `  y )  =  ( F `  A )  <-> 
( ( F `  y )  <_  ( F `  u )  /\  ( F `  v
)  <_  ( F `  y ) ) ) ) )
161160impancom 438 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( ( F `
 u )  =  ( F `  A
)  /\  ( F `  v )  =  ( F `  A ) ) )  ->  (
y  e.  ( A [,] B )  -> 
( ( F `  y )  =  ( F `  A )  <-> 
( ( F `  y )  <_  ( F `  u )  /\  ( F `  v
)  <_  ( F `  y ) ) ) ) )
162161imp 427 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( ( F `
 u )  =  ( F `  A
)  /\  ( F `  v )  =  ( F `  A ) ) )  /\  y  e.  ( A [,] B
) )  ->  (
( F `  y
)  =  ( F `
 A )  <->  ( ( F `  y )  <_  ( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) ) )
163162ralbidva 2890 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( ( F `
 u )  =  ( F `  A
)  /\  ( F `  v )  =  ( F `  A ) ) )  ->  ( A. y  e.  ( A [,] B ) ( F `  y )  =  ( F `  A )  <->  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) ) )
164 ffn 5713 . . . . . . . . . . . . . 14  |-  ( F : ( A [,] B ) --> RR  ->  F  Fn  ( A [,] B ) )
16531, 164syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  F  Fn  ( A [,] B ) )
166 fnconstg 5755 . . . . . . . . . . . . . 14  |-  ( ( F `  A )  e.  RR  ->  (
( A [,] B
)  X.  { ( F `  A ) } )  Fn  ( A [,] B ) )
167153, 166syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( A [,] B )  X.  {
( F `  A
) } )  Fn  ( A [,] B
) )
168 eqfnfv 5957 . . . . . . . . . . . . 13  |-  ( ( F  Fn  ( A [,] B )  /\  ( ( A [,] B )  X.  {
( F `  A
) } )  Fn  ( A [,] B
) )  ->  ( F  =  ( ( A [,] B )  X. 
{ ( F `  A ) } )  <->  A. y  e.  ( A [,] B ) ( F `  y )  =  ( ( ( A [,] B )  X.  { ( F `
 A ) } ) `  y ) ) )
169165, 167, 168syl2anc 659 . . . . . . . . . . . 12  |-  ( ph  ->  ( F  =  ( ( A [,] B
)  X.  { ( F `  A ) } )  <->  A. y  e.  ( A [,] B
) ( F `  y )  =  ( ( ( A [,] B )  X.  {
( F `  A
) } ) `  y ) ) )
170 fvex 5858 . . . . . . . . . . . . . . 15  |-  ( F `
 A )  e. 
_V
171170fvconst2 6103 . . . . . . . . . . . . . 14  |-  ( y  e.  ( A [,] B )  ->  (
( ( A [,] B )  X.  {
( F `  A
) } ) `  y )  =  ( F `  A ) )
172171eqeq2d 2468 . . . . . . . . . . . . 13  |-  ( y  e.  ( A [,] B )  ->  (
( F `  y
)  =  ( ( ( A [,] B
)  X.  { ( F `  A ) } ) `  y
)  <->  ( F `  y )  =  ( F `  A ) ) )
173172ralbiia 2884 . . . . . . . . . . . 12  |-  ( A. y  e.  ( A [,] B ) ( F `
 y )  =  ( ( ( A [,] B )  X. 
{ ( F `  A ) } ) `
 y )  <->  A. y  e.  ( A [,] B
) ( F `  y )  =  ( F `  A ) )
174169, 173syl6bb 261 . . . . . . . . . . 11  |-  ( ph  ->  ( F  =  ( ( A [,] B
)  X.  { ( F `  A ) } )  <->  A. y  e.  ( A [,] B
) ( F `  y )  =  ( F `  A ) ) )
175 fconstmpt 5032 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A [,] B )  X.  { ( F `
 A ) } )  =  ( u  e.  ( A [,] B )  |->  ( F `
 A ) )
176175eqeq2i 2472 . . . . . . . . . . . . . . . . . . 19  |-  ( F  =  ( ( A [,] B )  X. 
{ ( F `  A ) } )  <-> 
F  =  ( u  e.  ( A [,] B )  |->  ( F `
 A ) ) )
177176biimpi 194 . . . . . . . . . . . . . . . . . 18  |-  ( F  =  ( ( A [,] B )  X. 
{ ( F `  A ) } )  ->  F  =  ( u  e.  ( A [,] B )  |->  ( F `  A ) ) )
178177oveq2d 6286 . . . . . . . . . . . . . . . . 17  |-  ( F  =  ( ( A [,] B )  X. 
{ ( F `  A ) } )  ->  ( RR  _D  F )  =  ( RR  _D  ( u  e.  ( A [,] B )  |->  ( F `
 A ) ) ) )
179153recnd 9611 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( F `  A
)  e.  CC )
180179adantr 463 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  u  e.  RR )  ->  ( F `
 A )  e.  CC )
181 0cnd 9578 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  u  e.  RR )  ->  0  e.  CC )
18260, 179dvmptc 22527 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( RR  _D  (
u  e.  RR  |->  ( F `  A ) ) )  =  ( u  e.  RR  |->  0 ) )
18360, 180, 181, 182, 49, 55, 54, 57dvmptres2 22531 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( RR  _D  (
u  e.  ( A [,] B )  |->  ( F `  A ) ) )  =  ( u  e.  ( A (,) B )  |->  0 ) )
184178, 183sylan9eqr 2517 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  F  =  ( ( A [,] B )  X.  {
( F `  A
) } ) )  ->  ( RR  _D  F )  =  ( u  e.  ( A (,) B )  |->  0 ) )
185184fveq1d 5850 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  F  =  ( ( A [,] B )  X.  {
( F `  A
) } ) )  ->  ( ( RR 
_D  F ) `  x )  =  ( ( u  e.  ( A (,) B ) 
|->  0 ) `  x
) )
186 eqidd 2455 . . . . . . . . . . . . . . . 16  |-  ( u  =  x  ->  0  =  0 )
187 eqid 2454 . . . . . . . . . . . . . . . 16  |-  ( u  e.  ( A (,) B )  |->  0 )  =  ( u  e.  ( A (,) B
)  |->  0 )
188 c0ex 9579 . . . . . . . . . . . . . . . 16  |-  0  e.  _V
189186, 187, 188fvmpt 5931 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( A (,) B )  ->  (
( u  e.  ( A (,) B ) 
|->  0 ) `  x
)  =  0 )
190185, 189sylan9eq 2515 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F  =  ( ( A [,] B )  X. 
{ ( F `  A ) } ) )  /\  x  e.  ( A (,) B
) )  ->  (
( RR  _D  F
) `  x )  =  0 )
191190ralrimiva 2868 . . . . . . . . . . . . 13  |-  ( (
ph  /\  F  =  ( ( A [,] B )  X.  {
( F `  A
) } ) )  ->  A. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  0 )
192 ioon0 11558 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A (,) B
)  =/=  (/)  <->  A  <  B ) )
193149, 150, 192syl2anc 659 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( A (,) B )  =/=  (/)  <->  A  <  B ) )
1943, 193mpbird 232 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A (,) B
)  =/=  (/) )
195 r19.2z 3906 . . . . . . . . . . . . . 14  |-  ( ( ( A (,) B
)  =/=  (/)  /\  A. x  e.  ( A (,) B ) ( ( RR  _D  F ) `
 x )  =  0 )  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 )
196194, 195sylan 469 . . . . . . . . . . . . 13  |-  ( (
ph  /\  A. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 )  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 )
197191, 196syldan 468 . . . . . . . . . . . 12  |-  ( (
ph  /\  F  =  ( ( A [,] B )  X.  {
( F `  A
) } ) )  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  0 )
198197ex 432 . . . . . . . . . . 11  |-  ( ph  ->  ( F  =  ( ( A [,] B
)  X.  { ( F `  A ) } )  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 ) )
199174, 198sylbird 235 . . . . . . . . . 10  |-  ( ph  ->  ( A. y  e.  ( A [,] B
) ( F `  y )  =  ( F `  A )  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  0 ) )
200199ad2antrr 723 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( ( F `
 u )  =  ( F `  A
)  /\  ( F `  v )  =  ( F `  A ) ) )  ->  ( A. y  e.  ( A [,] B ) ( F `  y )  =  ( F `  A )  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 ) )
201163, 200sylbird 235 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( ( F `
 u )  =  ( F `  A
)  /\  ( F `  v )  =  ( F `  A ) ) )  ->  ( A. y  e.  ( A [,] B ) ( ( F `  y
)  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 ) )
202201impancom 438 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  ->  (
( ( F `  u )  =  ( F `  A )  /\  ( F `  v )  =  ( F `  A ) )  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 ) )
203148, 202syld 44 . . . . . 6  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  ->  (
( u  e.  { A ,  B }  /\  v  e.  { A ,  B } )  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F
) `  x )  =  0 ) )
20426, 130, 203ecased 942 . . . . 5  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 )
205204ex 432 . . . 4  |-  ( (
ph  /\  ( u  e.  ( A [,] B
)  /\  v  e.  ( A [,] B ) ) )  ->  ( A. y  e.  ( A [,] B ) ( ( F `  y
)  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 ) )
2069, 205syl5bir 218 . . 3  |-  ( (
ph  /\  ( u  e.  ( A [,] B
)  /\  v  e.  ( A [,] B ) ) )  ->  (
( A. y  e.  ( A [,] B
) ( F `  y )  <_  ( F `  u )  /\  A. y  e.  ( A [,] B ) ( F `  v
)  <_  ( F `  y ) )  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F
) `  x )  =  0 ) )
207206rexlimdvva 2953 . 2  |-  ( ph  ->  ( E. u  e.  ( A [,] B
) E. v  e.  ( A [,] B
) ( A. y  e.  ( A [,] B
) ( F `  y )  <_  ( F `  u )  /\  A. y  e.  ( A [,] B ) ( F `  v
)  <_  ( F `  y ) )  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F
) `  x )  =  0 ) )
2088, 207mpd 15 1  |-  ( ph  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  0 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    = wceq 1398    e. wcel 1823    =/= wne 2649   A.wral 2804   E.wrex 2805   _Vcvv 3106    C_ wss 3461   (/)c0 3783   {csn 4016   {cpr 4018   class class class wbr 4439    |-> cmpt 4497    X. cxp 4986   dom cdm 4988   ran crn 4989    Fn wfn 5565   -->wf 5566   ` cfv 5570  (class class class)co 6270   CCcc 9479   RRcr 9480   0cc0 9481   RR*cxr 9616    < clt 9617    <_ cle 9618   -ucneg 9797   (,)cioo 11532   [,]cicc 11535   TopOpenctopn 14911   topGenctg 14927  ℂfldccnfld 18615   intcnt 19685   -cn->ccncf 21546    _D cdv 22433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560  ax-mulf 9561
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-iin 4318  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-of 6513  df-om 6674  df-1st 6773  df-2nd 6774  df-supp 6892  df-recs 7034  df-rdg 7068  df-1o 7122  df-2o 7123  df-oadd 7126  df-er 7303  df-map 7414  df-pm 7415  df-ixp 7463  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-fsupp 7822  df-fi 7863  df-sup 7893  df-oi 7927  df-card 8311  df-cda 8539  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10977  df-uz 11083  df-q 11184  df-rp 11222  df-xneg 11321  df-xadd 11322  df-xmul 11323  df-ioo 11536  df-ico 11538  df-icc 11539  df-fz 11676  df-fzo 11800  df-seq 12090  df-exp 12149  df-hash 12388  df-cj 13014  df-re 13015  df-im 13016  df-sqrt 13150  df-abs 13151  df-struct 14718  df-ndx 14719  df-slot 14720  df-base 14721  df-sets 14722  df-ress 14723  df-plusg 14797  df-mulr 14798  df-starv 14799  df-sca 14800  df-vsca 14801  df-ip 14802  df-tset 14803  df-ple 14804  df-ds 14806  df-unif 14807  df-hom 14808  df-cco 14809  df-rest 14912  df-topn 14913  df-0g 14931  df-gsum 14932  df-topgen 14933  df-pt 14934  df-prds 14937  df-xrs 14991  df-qtop 14996  df-imas 14997  df-xps 14999  df-mre 15075  df-mrc 15076  df-acs 15078  df-mgm 16071  df-sgrp 16110  df-mnd 16120  df-submnd 16166  df-mulg 16259  df-cntz 16554  df-cmn 16999  df-psmet 18606  df-xmet 18607  df-met 18608  df-bl 18609  df-mopn 18610  df-fbas 18611  df-fg 18612  df-cnfld 18616  df-top 19566  df-bases 19568  df-topon 19569  df-topsp 19570  df-cld 19687  df-ntr 19688  df-cls 19689  df-nei 19766  df-lp 19804  df-perf 19805  df-cn 19895  df-cnp 19896  df-haus 19983  df-cmp 20054  df-tx 20229  df-hmeo 20422  df-fil 20513  df-fm 20605  df-flim 20606  df-flf 20607  df-xms 20989  df-ms 20990  df-tms 20991  df-cncf 21548  df-limc 22436  df-dv 22437
This theorem is referenced by:  cmvth  22558  lhop1lem  22580
  Copyright terms: Public domain W3C validator