MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rolle Structured version   Unicode version

Theorem rolle 22154
Description: Rolle's theorem. If  F is a real continuous function on  [ A ,  B ] which is differentiable on  ( A ,  B
), and  F ( A )  =  F ( B ), then there is some  x  e.  ( A ,  B ) such that  ( RR  _D  F ) `  x  =  0. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
rolle.a  |-  ( ph  ->  A  e.  RR )
rolle.b  |-  ( ph  ->  B  e.  RR )
rolle.lt  |-  ( ph  ->  A  <  B )
rolle.f  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> RR ) )
rolle.d  |-  ( ph  ->  dom  ( RR  _D  F )  =  ( A (,) B ) )
rolle.e  |-  ( ph  ->  ( F `  A
)  =  ( F `
 B ) )
Assertion
Ref Expression
rolle  |-  ( ph  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  0 )
Distinct variable groups:    x, A    ph, x    x, B    x, F

Proof of Theorem rolle
Dummy variables  u  t  v  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rolle.a . . . 4  |-  ( ph  ->  A  e.  RR )
2 rolle.b . . . 4  |-  ( ph  ->  B  e.  RR )
3 rolle.lt . . . . 5  |-  ( ph  ->  A  <  B )
41, 2, 3ltled 9732 . . . 4  |-  ( ph  ->  A  <_  B )
5 rolle.f . . . 4  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> RR ) )
61, 2, 4, 5evthicc 21634 . . 3  |-  ( ph  ->  ( E. u  e.  ( A [,] B
) A. y  e.  ( A [,] B
) ( F `  y )  <_  ( F `  u )  /\  E. v  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( F `  v
)  <_  ( F `  y ) ) )
7 reeanv 3029 . . 3  |-  ( E. u  e.  ( A [,] B ) E. v  e.  ( A [,] B ) ( A. y  e.  ( A [,] B ) ( F `  y
)  <_  ( F `  u )  /\  A. y  e.  ( A [,] B ) ( F `
 v )  <_ 
( F `  y
) )  <->  ( E. u  e.  ( A [,] B ) A. y  e.  ( A [,] B
) ( F `  y )  <_  ( F `  u )  /\  E. v  e.  ( A [,] B ) A. y  e.  ( A [,] B ) ( F `  v
)  <_  ( F `  y ) ) )
86, 7sylibr 212 . 2  |-  ( ph  ->  E. u  e.  ( A [,] B ) E. v  e.  ( A [,] B ) ( A. y  e.  ( A [,] B
) ( F `  y )  <_  ( F `  u )  /\  A. y  e.  ( A [,] B ) ( F `  v
)  <_  ( F `  y ) ) )
9 r19.26 2989 . . . 4  |-  ( A. y  e.  ( A [,] B ) ( ( F `  y )  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  <->  ( A. y  e.  ( A [,] B ) ( F `
 y )  <_ 
( F `  u
)  /\  A. y  e.  ( A [,] B
) ( F `  v )  <_  ( F `  y )
) )
101ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  A  e.  RR )
112ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  B  e.  RR )
123ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  A  <  B )
135ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  F  e.  ( ( A [,] B ) -cn-> RR ) )
14 rolle.d . . . . . . . . 9  |-  ( ph  ->  dom  ( RR  _D  F )  =  ( A (,) B ) )
1514ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  dom  ( RR  _D  F
)  =  ( A (,) B ) )
16 simpl 457 . . . . . . . . . . 11  |-  ( ( ( F `  y
)  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  ->  ( F `  y )  <_  ( F `  u
) )
1716ralimi 2857 . . . . . . . . . 10  |-  ( A. y  e.  ( A [,] B ) ( ( F `  y )  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  ->  A. y  e.  ( A [,] B
) ( F `  y )  <_  ( F `  u )
)
18 fveq2 5866 . . . . . . . . . . . 12  |-  ( y  =  t  ->  ( F `  y )  =  ( F `  t ) )
1918breq1d 4457 . . . . . . . . . . 11  |-  ( y  =  t  ->  (
( F `  y
)  <_  ( F `  u )  <->  ( F `  t )  <_  ( F `  u )
) )
2019cbvralv 3088 . . . . . . . . . 10  |-  ( A. y  e.  ( A [,] B ) ( F `
 y )  <_ 
( F `  u
)  <->  A. t  e.  ( A [,] B ) ( F `  t
)  <_  ( F `  u ) )
2117, 20sylib 196 . . . . . . . . 9  |-  ( A. y  e.  ( A [,] B ) ( ( F `  y )  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  ->  A. t  e.  ( A [,] B
) ( F `  t )  <_  ( F `  u )
)
2221ad2antrl 727 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  A. t  e.  ( A [,] B ) ( F `  t )  <_  ( F `  u ) )
23 simplrl 759 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  u  e.  ( A [,] B ) )
24 simprr 756 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  -.  u  e.  { A ,  B } )
2510, 11, 12, 13, 15, 22, 23, 24rollelem 22153 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  u  e.  { A ,  B } ) )  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F
) `  x )  =  0 )
2625expr 615 . . . . . 6  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  ->  ( -.  u  e.  { A ,  B }  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 ) )
271ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  ->  A  e.  RR )
282ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  ->  B  e.  RR )
293ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  ->  A  <  B )
30 cncff 21160 . . . . . . . . . . . . . . 15  |-  ( F  e.  ( ( A [,] B ) -cn-> RR )  ->  F :
( A [,] B
) --> RR )
315, 30syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  F : ( A [,] B ) --> RR )
3231ffvelrnda 6021 . . . . . . . . . . . . 13  |-  ( (
ph  /\  u  e.  ( A [,] B ) )  ->  ( F `  u )  e.  RR )
3332renegcld 9986 . . . . . . . . . . . 12  |-  ( (
ph  /\  u  e.  ( A [,] B ) )  ->  -u ( F `
 u )  e.  RR )
34 eqid 2467 . . . . . . . . . . . 12  |-  ( u  e.  ( A [,] B )  |->  -u ( F `  u )
)  =  ( u  e.  ( A [,] B )  |->  -u ( F `  u )
)
3533, 34fmptd 6045 . . . . . . . . . . 11  |-  ( ph  ->  ( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) : ( A [,] B
) --> RR )
36 ax-resscn 9549 . . . . . . . . . . . 12  |-  RR  C_  CC
37 ssid 3523 . . . . . . . . . . . . . . 15  |-  CC  C_  CC
38 cncfss 21166 . . . . . . . . . . . . . . 15  |-  ( ( RR  C_  CC  /\  CC  C_  CC )  ->  (
( A [,] B
) -cn-> RR )  C_  (
( A [,] B
) -cn-> CC ) )
3936, 37, 38mp2an 672 . . . . . . . . . . . . . 14  |-  ( ( A [,] B )
-cn-> RR )  C_  (
( A [,] B
) -cn-> CC )
4039, 5sseldi 3502 . . . . . . . . . . . . 13  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> CC ) )
4134negfcncf 21186 . . . . . . . . . . . . 13  |-  ( F  e.  ( ( A [,] B ) -cn-> CC )  ->  ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) )  e.  ( ( A [,] B ) -cn-> CC ) )
4240, 41syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) )  e.  ( ( A [,] B ) -cn-> CC ) )
43 cncffvrn 21165 . . . . . . . . . . . 12  |-  ( ( RR  C_  CC  /\  (
u  e.  ( A [,] B )  |->  -u ( F `  u ) )  e.  ( ( A [,] B )
-cn-> CC ) )  -> 
( ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) )  e.  ( ( A [,] B ) -cn-> RR )  <-> 
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) : ( A [,] B
) --> RR ) )
4436, 42, 43sylancr 663 . . . . . . . . . . 11  |-  ( ph  ->  ( ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) )  e.  ( ( A [,] B ) -cn-> RR )  <-> 
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) : ( A [,] B
) --> RR ) )
4535, 44mpbird 232 . . . . . . . . . 10  |-  ( ph  ->  ( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) )  e.  ( ( A [,] B ) -cn-> RR ) )
4645ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  -> 
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) )  e.  ( ( A [,] B ) -cn-> RR ) )
4736a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  RR  C_  CC )
48 iccssre 11606 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
491, 2, 48syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A [,] B
)  C_  RR )
50 fss 5739 . . . . . . . . . . . . . . . . 17  |-  ( ( F : ( A [,] B ) --> RR 
/\  RR  C_  CC )  ->  F : ( A [,] B ) --> CC )
5131, 36, 50sylancl 662 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F : ( A [,] B ) --> CC )
5251ffvelrnda 6021 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  u  e.  ( A [,] B ) )  ->  ( F `  u )  e.  CC )
5352negcld 9917 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  u  e.  ( A [,] B ) )  ->  -u ( F `
 u )  e.  CC )
54 eqid 2467 . . . . . . . . . . . . . . 15  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
5554tgioo2 21071 . . . . . . . . . . . . . 14  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
56 iccntr 21089 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
571, 2, 56syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
5847, 49, 53, 55, 54, 57dvmptntr 22137 . . . . . . . . . . . . 13  |-  ( ph  ->  ( RR  _D  (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) )  =  ( RR  _D  ( u  e.  ( A (,) B )  |->  -u ( F `  u )
) ) )
59 reelprrecn 9584 . . . . . . . . . . . . . . 15  |-  RR  e.  { RR ,  CC }
6059a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  RR  e.  { RR ,  CC } )
61 ioossicc 11610 . . . . . . . . . . . . . . . 16  |-  ( A (,) B )  C_  ( A [,] B )
6261sseli 3500 . . . . . . . . . . . . . . 15  |-  ( u  e.  ( A (,) B )  ->  u  e.  ( A [,] B
) )
6362, 52sylan2 474 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  u  e.  ( A (,) B ) )  ->  ( F `  u )  e.  CC )
64 fvex 5876 . . . . . . . . . . . . . . 15  |-  ( ( RR  _D  F ) `
 u )  e. 
_V
6564a1i 11 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  u  e.  ( A (,) B ) )  ->  ( ( RR  _D  F ) `  u )  e.  _V )
6631feqmptd 5920 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F  =  ( u  e.  ( A [,] B )  |->  ( F `
 u ) ) )
6766oveq2d 6300 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( RR  _D  F
)  =  ( RR 
_D  ( u  e.  ( A [,] B
)  |->  ( F `  u ) ) ) )
68 dvf 22074 . . . . . . . . . . . . . . . . 17  |-  ( RR 
_D  F ) : dom  ( RR  _D  F ) --> CC
6914feq2d 5718 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( RR  _D  F ) : dom  ( RR  _D  F
) --> CC  <->  ( RR  _D  F ) : ( A (,) B ) --> CC ) )
7068, 69mpbii 211 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( RR  _D  F
) : ( A (,) B ) --> CC )
7170feqmptd 5920 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( RR  _D  F
)  =  ( u  e.  ( A (,) B )  |->  ( ( RR  _D  F ) `
 u ) ) )
7247, 49, 52, 55, 54, 57dvmptntr 22137 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( RR  _D  (
u  e.  ( A [,] B )  |->  ( F `  u ) ) )  =  ( RR  _D  ( u  e.  ( A (,) B )  |->  ( F `
 u ) ) ) )
7367, 71, 723eqtr3rd 2517 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( RR  _D  (
u  e.  ( A (,) B )  |->  ( F `  u ) ) )  =  ( u  e.  ( A (,) B )  |->  ( ( RR  _D  F
) `  u )
) )
7460, 63, 65, 73dvmptneg 22132 . . . . . . . . . . . . 13  |-  ( ph  ->  ( RR  _D  (
u  e.  ( A (,) B )  |->  -u ( F `  u ) ) )  =  ( u  e.  ( A (,) B )  |->  -u ( ( RR  _D  F ) `  u
) ) )
7558, 74eqtrd 2508 . . . . . . . . . . . 12  |-  ( ph  ->  ( RR  _D  (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) )  =  ( u  e.  ( A (,) B )  |->  -u ( ( RR  _D  F ) `  u
) ) )
7675dmeqd 5205 . . . . . . . . . . 11  |-  ( ph  ->  dom  ( RR  _D  ( u  e.  ( A [,] B )  |->  -u ( F `  u ) ) )  =  dom  ( u  e.  ( A (,) B )  |->  -u ( ( RR  _D  F ) `  u
) ) )
77 dmmptg 5504 . . . . . . . . . . . 12  |-  ( A. u  e.  ( A (,) B ) -u (
( RR  _D  F
) `  u )  e.  _V  ->  dom  ( u  e.  ( A (,) B )  |->  -u (
( RR  _D  F
) `  u )
)  =  ( A (,) B ) )
78 negex 9818 . . . . . . . . . . . . 13  |-  -u (
( RR  _D  F
) `  u )  e.  _V
7978a1i 11 . . . . . . . . . . . 12  |-  ( u  e.  ( A (,) B )  ->  -u (
( RR  _D  F
) `  u )  e.  _V )
8077, 79mprg 2827 . . . . . . . . . . 11  |-  dom  (
u  e.  ( A (,) B )  |->  -u ( ( RR  _D  F ) `  u
) )  =  ( A (,) B )
8176, 80syl6eq 2524 . . . . . . . . . 10  |-  ( ph  ->  dom  ( RR  _D  ( u  e.  ( A [,] B )  |->  -u ( F `  u ) ) )  =  ( A (,) B ) )
8281ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  ->  dom  ( RR  _D  (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) )  =  ( A (,) B ) )
83 simpr 461 . . . . . . . . . . . . . 14  |-  ( ( ( F `  y
)  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  ->  ( F `  v )  <_  ( F `  y
) )
8431ad2antrr 725 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  F :
( A [,] B
) --> RR )
85 simplrr 760 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  v  e.  ( A [,] B ) )
8684, 85ffvelrnd 6022 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( F `  v )  e.  RR )
8731adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( u  e.  ( A [,] B
)  /\  v  e.  ( A [,] B ) ) )  ->  F : ( A [,] B ) --> RR )
8887ffvelrnda 6021 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( F `  y )  e.  RR )
8986, 88lenegd 10131 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( ( F `  v )  <_  ( F `  y
)  <->  -u ( F `  y )  <_  -u ( F `  v )
) )
90 fveq2 5866 . . . . . . . . . . . . . . . . . . 19  |-  ( u  =  y  ->  ( F `  u )  =  ( F `  y ) )
9190negeqd 9814 . . . . . . . . . . . . . . . . . 18  |-  ( u  =  y  ->  -u ( F `  u )  =  -u ( F `  y ) )
92 negex 9818 . . . . . . . . . . . . . . . . . 18  |-  -u ( F `  y )  e.  _V
9391, 34, 92fvmpt 5950 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( A [,] B )  ->  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  y )  =  -u ( F `  y ) )
9493adantl 466 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) `  y )  =  -u ( F `  y ) )
95 fveq2 5866 . . . . . . . . . . . . . . . . . . 19  |-  ( u  =  v  ->  ( F `  u )  =  ( F `  v ) )
9695negeqd 9814 . . . . . . . . . . . . . . . . . 18  |-  ( u  =  v  ->  -u ( F `  u )  =  -u ( F `  v ) )
97 negex 9818 . . . . . . . . . . . . . . . . . 18  |-  -u ( F `  v )  e.  _V
9896, 34, 97fvmpt 5950 . . . . . . . . . . . . . . . . 17  |-  ( v  e.  ( A [,] B )  ->  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  v )  =  -u ( F `  v ) )
9985, 98syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) `  v )  =  -u ( F `  v ) )
10094, 99breq12d 4460 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  y )  <_  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  v )  <->  -u ( F `
 y )  <_  -u ( F `  v
) ) )
10189, 100bitr4d 256 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( ( F `  v )  <_  ( F `  y
)  <->  ( ( u  e.  ( A [,] B )  |->  -u ( F `  u )
) `  y )  <_  ( ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) ) `  v ) ) )
10283, 101syl5ib 219 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( (
( F `  y
)  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  ->  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  y )  <_  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  v ) ) )
103102ralimdva 2872 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( u  e.  ( A [,] B
)  /\  v  e.  ( A [,] B ) ) )  ->  ( A. y  e.  ( A [,] B ) ( ( F `  y
)  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  ->  A. y  e.  ( A [,] B
) ( ( u  e.  ( A [,] B )  |->  -u ( F `  u )
) `  y )  <_  ( ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) ) `  v ) ) )
104103imp 429 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  ->  A. y  e.  ( A [,] B
) ( ( u  e.  ( A [,] B )  |->  -u ( F `  u )
) `  y )  <_  ( ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) ) `  v ) )
105 fveq2 5866 . . . . . . . . . . . . 13  |-  ( y  =  t  ->  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  y )  =  ( ( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  t ) )
106105breq1d 4457 . . . . . . . . . . . 12  |-  ( y  =  t  ->  (
( ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) ) `  y )  <_  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  v )  <->  ( (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) `  t )  <_  ( ( u  e.  ( A [,] B )  |->  -u ( F `  u )
) `  v )
) )
107106cbvralv 3088 . . . . . . . . . . 11  |-  ( A. y  e.  ( A [,] B ) ( ( u  e.  ( A [,] B )  |->  -u ( F `  u ) ) `  y )  <_  ( ( u  e.  ( A [,] B )  |->  -u ( F `  u )
) `  v )  <->  A. t  e.  ( A [,] B ) ( ( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  t )  <_  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  v ) )
108104, 107sylib 196 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  ->  A. t  e.  ( A [,] B
) ( ( u  e.  ( A [,] B )  |->  -u ( F `  u )
) `  t )  <_  ( ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) ) `  v ) )
109108adantrr 716 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  ->  A. t  e.  ( A [,] B ) ( ( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  t )  <_  (
( u  e.  ( A [,] B ) 
|->  -u ( F `  u ) ) `  v ) )
110 simplrr 760 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  -> 
v  e.  ( A [,] B ) )
111 simprr 756 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  ->  -.  v  e.  { A ,  B } )
11227, 28, 29, 46, 82, 109, 110, 111rollelem 22153 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) ) `  x
)  =  0 )
11375fveq1d 5868 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( RR  _D  ( u  e.  ( A [,] B )  |->  -u ( F `  u ) ) ) `  x
)  =  ( ( u  e.  ( A (,) B )  |->  -u ( ( RR  _D  F ) `  u
) ) `  x
) )
114 fveq2 5866 . . . . . . . . . . . . . . 15  |-  ( u  =  x  ->  (
( RR  _D  F
) `  u )  =  ( ( RR 
_D  F ) `  x ) )
115114negeqd 9814 . . . . . . . . . . . . . 14  |-  ( u  =  x  ->  -u (
( RR  _D  F
) `  u )  =  -u ( ( RR 
_D  F ) `  x ) )
116 eqid 2467 . . . . . . . . . . . . . 14  |-  ( u  e.  ( A (,) B )  |->  -u (
( RR  _D  F
) `  u )
)  =  ( u  e.  ( A (,) B )  |->  -u (
( RR  _D  F
) `  u )
)
117 negex 9818 . . . . . . . . . . . . . 14  |-  -u (
( RR  _D  F
) `  x )  e.  _V
118115, 116, 117fvmpt 5950 . . . . . . . . . . . . 13  |-  ( x  e.  ( A (,) B )  ->  (
( u  e.  ( A (,) B ) 
|->  -u ( ( RR 
_D  F ) `  u ) ) `  x )  =  -u ( ( RR  _D  F ) `  x
) )
119113, 118sylan9eq 2528 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( ( RR  _D  ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) ) ) `
 x )  = 
-u ( ( RR 
_D  F ) `  x ) )
120119eqeq1d 2469 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( RR  _D  (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) ) `  x
)  =  0  <->  -u (
( RR  _D  F
) `  x )  =  0 ) )
12114eleq2d 2537 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( x  e.  dom  ( RR  _D  F
)  <->  x  e.  ( A (,) B ) ) )
122121biimpar 485 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  x  e.  dom  ( RR  _D  F
) )
12368ffvelrni 6020 . . . . . . . . . . . . 13  |-  ( x  e.  dom  ( RR 
_D  F )  -> 
( ( RR  _D  F ) `  x
)  e.  CC )
124122, 123syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( ( RR  _D  F ) `  x )  e.  CC )
125124negeq0d 9922 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( RR  _D  F
) `  x )  =  0  <->  -u ( ( RR  _D  F ) `
 x )  =  0 ) )
126120, 125bitr4d 256 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( RR  _D  (
u  e.  ( A [,] B )  |->  -u ( F `  u ) ) ) `  x
)  =  0  <->  (
( RR  _D  F
) `  x )  =  0 ) )
127126rexbidva 2970 . . . . . . . . 9  |-  ( ph  ->  ( E. x  e.  ( A (,) B
) ( ( RR 
_D  ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) ) ) `
 x )  =  0  <->  E. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  0 ) )
128127ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  -> 
( E. x  e.  ( A (,) B
) ( ( RR 
_D  ( u  e.  ( A [,] B
)  |->  -u ( F `  u ) ) ) `
 x )  =  0  <->  E. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  0 ) )
129112, 128mpbid 210 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  /\  -.  v  e.  { A ,  B } ) )  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F
) `  x )  =  0 )
130129expr 615 . . . . . 6  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  ->  ( -.  v  e.  { A ,  B }  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 ) )
131 vex 3116 . . . . . . . . . . 11  |-  u  e. 
_V
132131elpr 4045 . . . . . . . . . 10  |-  ( u  e.  { A ,  B }  <->  ( u  =  A  \/  u  =  B ) )
133 fveq2 5866 . . . . . . . . . . . 12  |-  ( u  =  A  ->  ( F `  u )  =  ( F `  A ) )
134133a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  ( u  =  A  ->  ( F `  u )  =  ( F `  A ) ) )
135 rolle.e . . . . . . . . . . . . 13  |-  ( ph  ->  ( F `  A
)  =  ( F `
 B ) )
136135eqcomd 2475 . . . . . . . . . . . 12  |-  ( ph  ->  ( F `  B
)  =  ( F `
 A ) )
137 fveq2 5866 . . . . . . . . . . . . 13  |-  ( u  =  B  ->  ( F `  u )  =  ( F `  B ) )
138137eqeq1d 2469 . . . . . . . . . . . 12  |-  ( u  =  B  ->  (
( F `  u
)  =  ( F `
 A )  <->  ( F `  B )  =  ( F `  A ) ) )
139136, 138syl5ibrcom 222 . . . . . . . . . . 11  |-  ( ph  ->  ( u  =  B  ->  ( F `  u )  =  ( F `  A ) ) )
140134, 139jaod 380 . . . . . . . . . 10  |-  ( ph  ->  ( ( u  =  A  \/  u  =  B )  ->  ( F `  u )  =  ( F `  A ) ) )
141132, 140syl5bi 217 . . . . . . . . 9  |-  ( ph  ->  ( u  e.  { A ,  B }  ->  ( F `  u
)  =  ( F `
 A ) ) )
142 eleq1 2539 . . . . . . . . . . . 12  |-  ( u  =  v  ->  (
u  e.  { A ,  B }  <->  v  e.  { A ,  B }
) )
14395eqeq1d 2469 . . . . . . . . . . . 12  |-  ( u  =  v  ->  (
( F `  u
)  =  ( F `
 A )  <->  ( F `  v )  =  ( F `  A ) ) )
144142, 143imbi12d 320 . . . . . . . . . . 11  |-  ( u  =  v  ->  (
( u  e.  { A ,  B }  ->  ( F `  u
)  =  ( F `
 A ) )  <-> 
( v  e.  { A ,  B }  ->  ( F `  v
)  =  ( F `
 A ) ) ) )
145144imbi2d 316 . . . . . . . . . 10  |-  ( u  =  v  ->  (
( ph  ->  ( u  e.  { A ,  B }  ->  ( F `
 u )  =  ( F `  A
) ) )  <->  ( ph  ->  ( v  e.  { A ,  B }  ->  ( F `  v
)  =  ( F `
 A ) ) ) ) )
146145, 141chvarv 1983 . . . . . . . . 9  |-  ( ph  ->  ( v  e.  { A ,  B }  ->  ( F `  v
)  =  ( F `
 A ) ) )
147141, 146anim12d 563 . . . . . . . 8  |-  ( ph  ->  ( ( u  e. 
{ A ,  B }  /\  v  e.  { A ,  B }
)  ->  ( ( F `  u )  =  ( F `  A )  /\  ( F `  v )  =  ( F `  A ) ) ) )
148147ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  ->  (
( u  e.  { A ,  B }  /\  v  e.  { A ,  B } )  -> 
( ( F `  u )  =  ( F `  A )  /\  ( F `  v )  =  ( F `  A ) ) ) )
1491rexrd 9643 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A  e.  RR* )
1502rexrd 9643 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  B  e.  RR* )
151 lbicc2 11636 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  A  e.  ( A [,] B
) )
152149, 150, 4, 151syl3anc 1228 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A  e.  ( A [,] B ) )
15331, 152ffvelrnd 6022 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( F `  A
)  e.  RR )
154153ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( F `  A )  e.  RR )
15588, 154letri3d 9726 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( ( F `  y )  =  ( F `  A )  <->  ( ( F `  y )  <_  ( F `  A
)  /\  ( F `  A )  <_  ( F `  y )
) ) )
156 breq2 4451 . . . . . . . . . . . . . . 15  |-  ( ( F `  u )  =  ( F `  A )  ->  (
( F `  y
)  <_  ( F `  u )  <->  ( F `  y )  <_  ( F `  A )
) )
157 breq1 4450 . . . . . . . . . . . . . . 15  |-  ( ( F `  v )  =  ( F `  A )  ->  (
( F `  v
)  <_  ( F `  y )  <->  ( F `  A )  <_  ( F `  y )
) )
158156, 157bi2anan9 871 . . . . . . . . . . . . . 14  |-  ( ( ( F `  u
)  =  ( F `
 A )  /\  ( F `  v )  =  ( F `  A ) )  -> 
( ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
)  <->  ( ( F `
 y )  <_ 
( F `  A
)  /\  ( F `  A )  <_  ( F `  y )
) ) )
159158bibi2d 318 . . . . . . . . . . . . 13  |-  ( ( ( F `  u
)  =  ( F `
 A )  /\  ( F `  v )  =  ( F `  A ) )  -> 
( ( ( F `
 y )  =  ( F `  A
)  <->  ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  <->  ( ( F `  y )  =  ( F `  A )  <->  ( ( F `  y )  <_  ( F `  A
)  /\  ( F `  A )  <_  ( F `  y )
) ) ) )
160155, 159syl5ibrcom 222 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  y  e.  ( A [,] B ) )  ->  ( (
( F `  u
)  =  ( F `
 A )  /\  ( F `  v )  =  ( F `  A ) )  -> 
( ( F `  y )  =  ( F `  A )  <-> 
( ( F `  y )  <_  ( F `  u )  /\  ( F `  v
)  <_  ( F `  y ) ) ) ) )
161160impancom 440 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( ( F `
 u )  =  ( F `  A
)  /\  ( F `  v )  =  ( F `  A ) ) )  ->  (
y  e.  ( A [,] B )  -> 
( ( F `  y )  =  ( F `  A )  <-> 
( ( F `  y )  <_  ( F `  u )  /\  ( F `  v
)  <_  ( F `  y ) ) ) ) )
162161imp 429 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( ( F `
 u )  =  ( F `  A
)  /\  ( F `  v )  =  ( F `  A ) ) )  /\  y  e.  ( A [,] B
) )  ->  (
( F `  y
)  =  ( F `
 A )  <->  ( ( F `  y )  <_  ( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) ) )
163162ralbidva 2900 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( ( F `
 u )  =  ( F `  A
)  /\  ( F `  v )  =  ( F `  A ) ) )  ->  ( A. y  e.  ( A [,] B ) ( F `  y )  =  ( F `  A )  <->  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) ) )
164 ffn 5731 . . . . . . . . . . . . . 14  |-  ( F : ( A [,] B ) --> RR  ->  F  Fn  ( A [,] B ) )
16531, 164syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  F  Fn  ( A [,] B ) )
166 fnconstg 5773 . . . . . . . . . . . . . 14  |-  ( ( F `  A )  e.  RR  ->  (
( A [,] B
)  X.  { ( F `  A ) } )  Fn  ( A [,] B ) )
167153, 166syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( A [,] B )  X.  {
( F `  A
) } )  Fn  ( A [,] B
) )
168 eqfnfv 5975 . . . . . . . . . . . . 13  |-  ( ( F  Fn  ( A [,] B )  /\  ( ( A [,] B )  X.  {
( F `  A
) } )  Fn  ( A [,] B
) )  ->  ( F  =  ( ( A [,] B )  X. 
{ ( F `  A ) } )  <->  A. y  e.  ( A [,] B ) ( F `  y )  =  ( ( ( A [,] B )  X.  { ( F `
 A ) } ) `  y ) ) )
169165, 167, 168syl2anc 661 . . . . . . . . . . . 12  |-  ( ph  ->  ( F  =  ( ( A [,] B
)  X.  { ( F `  A ) } )  <->  A. y  e.  ( A [,] B
) ( F `  y )  =  ( ( ( A [,] B )  X.  {
( F `  A
) } ) `  y ) ) )
170 fvex 5876 . . . . . . . . . . . . . . 15  |-  ( F `
 A )  e. 
_V
171170fvconst2 6116 . . . . . . . . . . . . . 14  |-  ( y  e.  ( A [,] B )  ->  (
( ( A [,] B )  X.  {
( F `  A
) } ) `  y )  =  ( F `  A ) )
172171eqeq2d 2481 . . . . . . . . . . . . 13  |-  ( y  e.  ( A [,] B )  ->  (
( F `  y
)  =  ( ( ( A [,] B
)  X.  { ( F `  A ) } ) `  y
)  <->  ( F `  y )  =  ( F `  A ) ) )
173172ralbiia 2894 . . . . . . . . . . . 12  |-  ( A. y  e.  ( A [,] B ) ( F `
 y )  =  ( ( ( A [,] B )  X. 
{ ( F `  A ) } ) `
 y )  <->  A. y  e.  ( A [,] B
) ( F `  y )  =  ( F `  A ) )
174169, 173syl6bb 261 . . . . . . . . . . 11  |-  ( ph  ->  ( F  =  ( ( A [,] B
)  X.  { ( F `  A ) } )  <->  A. y  e.  ( A [,] B
) ( F `  y )  =  ( F `  A ) ) )
175 fconstmpt 5043 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A [,] B )  X.  { ( F `
 A ) } )  =  ( u  e.  ( A [,] B )  |->  ( F `
 A ) )
176175eqeq2i 2485 . . . . . . . . . . . . . . . . . . 19  |-  ( F  =  ( ( A [,] B )  X. 
{ ( F `  A ) } )  <-> 
F  =  ( u  e.  ( A [,] B )  |->  ( F `
 A ) ) )
177176biimpi 194 . . . . . . . . . . . . . . . . . 18  |-  ( F  =  ( ( A [,] B )  X. 
{ ( F `  A ) } )  ->  F  =  ( u  e.  ( A [,] B )  |->  ( F `  A ) ) )
178177oveq2d 6300 . . . . . . . . . . . . . . . . 17  |-  ( F  =  ( ( A [,] B )  X. 
{ ( F `  A ) } )  ->  ( RR  _D  F )  =  ( RR  _D  ( u  e.  ( A [,] B )  |->  ( F `
 A ) ) ) )
179153recnd 9622 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( F `  A
)  e.  CC )
180179adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  u  e.  RR )  ->  ( F `
 A )  e.  CC )
181 0cnd 9589 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  u  e.  RR )  ->  0  e.  CC )
18260, 179dvmptc 22124 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( RR  _D  (
u  e.  RR  |->  ( F `  A ) ) )  =  ( u  e.  RR  |->  0 ) )
18360, 180, 181, 182, 49, 55, 54, 57dvmptres2 22128 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( RR  _D  (
u  e.  ( A [,] B )  |->  ( F `  A ) ) )  =  ( u  e.  ( A (,) B )  |->  0 ) )
184178, 183sylan9eqr 2530 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  F  =  ( ( A [,] B )  X.  {
( F `  A
) } ) )  ->  ( RR  _D  F )  =  ( u  e.  ( A (,) B )  |->  0 ) )
185184fveq1d 5868 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  F  =  ( ( A [,] B )  X.  {
( F `  A
) } ) )  ->  ( ( RR 
_D  F ) `  x )  =  ( ( u  e.  ( A (,) B ) 
|->  0 ) `  x
) )
186 eqidd 2468 . . . . . . . . . . . . . . . 16  |-  ( u  =  x  ->  0  =  0 )
187 eqid 2467 . . . . . . . . . . . . . . . 16  |-  ( u  e.  ( A (,) B )  |->  0 )  =  ( u  e.  ( A (,) B
)  |->  0 )
188 c0ex 9590 . . . . . . . . . . . . . . . 16  |-  0  e.  _V
189186, 187, 188fvmpt 5950 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( A (,) B )  ->  (
( u  e.  ( A (,) B ) 
|->  0 ) `  x
)  =  0 )
190185, 189sylan9eq 2528 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F  =  ( ( A [,] B )  X. 
{ ( F `  A ) } ) )  /\  x  e.  ( A (,) B
) )  ->  (
( RR  _D  F
) `  x )  =  0 )
191190ralrimiva 2878 . . . . . . . . . . . . 13  |-  ( (
ph  /\  F  =  ( ( A [,] B )  X.  {
( F `  A
) } ) )  ->  A. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  0 )
192 ioon0 11555 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A (,) B
)  =/=  (/)  <->  A  <  B ) )
193149, 150, 192syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( A (,) B )  =/=  (/)  <->  A  <  B ) )
1943, 193mpbird 232 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A (,) B
)  =/=  (/) )
195 r19.2z 3917 . . . . . . . . . . . . . 14  |-  ( ( ( A (,) B
)  =/=  (/)  /\  A. x  e.  ( A (,) B ) ( ( RR  _D  F ) `
 x )  =  0 )  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 )
196194, 195sylan 471 . . . . . . . . . . . . 13  |-  ( (
ph  /\  A. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 )  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 )
197191, 196syldan 470 . . . . . . . . . . . 12  |-  ( (
ph  /\  F  =  ( ( A [,] B )  X.  {
( F `  A
) } ) )  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  0 )
198197ex 434 . . . . . . . . . . 11  |-  ( ph  ->  ( F  =  ( ( A [,] B
)  X.  { ( F `  A ) } )  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 ) )
199174, 198sylbird 235 . . . . . . . . . 10  |-  ( ph  ->  ( A. y  e.  ( A [,] B
) ( F `  y )  =  ( F `  A )  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  0 ) )
200199ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( ( F `
 u )  =  ( F `  A
)  /\  ( F `  v )  =  ( F `  A ) ) )  ->  ( A. y  e.  ( A [,] B ) ( F `  y )  =  ( F `  A )  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 ) )
201163, 200sylbird 235 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  ( ( F `
 u )  =  ( F `  A
)  /\  ( F `  v )  =  ( F `  A ) ) )  ->  ( A. y  e.  ( A [,] B ) ( ( F `  y
)  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 ) )
202201impancom 440 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  ->  (
( ( F `  u )  =  ( F `  A )  /\  ( F `  v )  =  ( F `  A ) )  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 ) )
203148, 202syld 44 . . . . . 6  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  ->  (
( u  e.  { A ,  B }  /\  v  e.  { A ,  B } )  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F
) `  x )  =  0 ) )
20426, 130, 203ecased 942 . . . . 5  |-  ( ( ( ph  /\  (
u  e.  ( A [,] B )  /\  v  e.  ( A [,] B ) ) )  /\  A. y  e.  ( A [,] B
) ( ( F `
 y )  <_ 
( F `  u
)  /\  ( F `  v )  <_  ( F `  y )
) )  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 )
205204ex 434 . . . 4  |-  ( (
ph  /\  ( u  e.  ( A [,] B
)  /\  v  e.  ( A [,] B ) ) )  ->  ( A. y  e.  ( A [,] B ) ( ( F `  y
)  <_  ( F `  u )  /\  ( F `  v )  <_  ( F `  y
) )  ->  E. x  e.  ( A (,) B
) ( ( RR 
_D  F ) `  x )  =  0 ) )
2069, 205syl5bir 218 . . 3  |-  ( (
ph  /\  ( u  e.  ( A [,] B
)  /\  v  e.  ( A [,] B ) ) )  ->  (
( A. y  e.  ( A [,] B
) ( F `  y )  <_  ( F `  u )  /\  A. y  e.  ( A [,] B ) ( F `  v
)  <_  ( F `  y ) )  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F
) `  x )  =  0 ) )
207206rexlimdvva 2962 . 2  |-  ( ph  ->  ( E. u  e.  ( A [,] B
) E. v  e.  ( A [,] B
) ( A. y  e.  ( A [,] B
) ( F `  y )  <_  ( F `  u )  /\  A. y  e.  ( A [,] B ) ( F `  v
)  <_  ( F `  y ) )  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F
) `  x )  =  0 ) )
2088, 207mpd 15 1  |-  ( ph  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  F ) `  x
)  =  0 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815   _Vcvv 3113    C_ wss 3476   (/)c0 3785   {csn 4027   {cpr 4029   class class class wbr 4447    |-> cmpt 4505    X. cxp 4997   dom cdm 4999   ran crn 5000    Fn wfn 5583   -->wf 5584   ` cfv 5588  (class class class)co 6284   CCcc 9490   RRcr 9491   0cc0 9492   RR*cxr 9627    < clt 9628    <_ cle 9629   -ucneg 9806   (,)cioo 11529   [,]cicc 11532   TopOpenctopn 14677   topGenctg 14693  ℂfldccnfld 18219   intcnt 19312   -cn->ccncf 21143    _D cdv 22030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570  ax-addf 9571  ax-mulf 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-of 6524  df-om 6685  df-1st 6784  df-2nd 6785  df-supp 6902  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-map 7422  df-pm 7423  df-ixp 7470  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fsupp 7830  df-fi 7871  df-sup 7901  df-oi 7935  df-card 8320  df-cda 8548  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-4 10596  df-5 10597  df-6 10598  df-7 10599  df-8 10600  df-9 10601  df-10 10602  df-n0 10796  df-z 10865  df-dec 10977  df-uz 11083  df-q 11183  df-rp 11221  df-xneg 11318  df-xadd 11319  df-xmul 11320  df-ioo 11533  df-ico 11535  df-icc 11536  df-fz 11673  df-fzo 11793  df-seq 12076  df-exp 12135  df-hash 12374  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-struct 14492  df-ndx 14493  df-slot 14494  df-base 14495  df-sets 14496  df-ress 14497  df-plusg 14568  df-mulr 14569  df-starv 14570  df-sca 14571  df-vsca 14572  df-ip 14573  df-tset 14574  df-ple 14575  df-ds 14577  df-unif 14578  df-hom 14579  df-cco 14580  df-rest 14678  df-topn 14679  df-0g 14697  df-gsum 14698  df-topgen 14699  df-pt 14700  df-prds 14703  df-xrs 14757  df-qtop 14762  df-imas 14763  df-xps 14765  df-mre 14841  df-mrc 14842  df-acs 14844  df-mnd 15732  df-submnd 15787  df-mulg 15870  df-cntz 16160  df-cmn 16606  df-psmet 18210  df-xmet 18211  df-met 18212  df-bl 18213  df-mopn 18214  df-fbas 18215  df-fg 18216  df-cnfld 18220  df-top 19194  df-bases 19196  df-topon 19197  df-topsp 19198  df-cld 19314  df-ntr 19315  df-cls 19316  df-nei 19393  df-lp 19431  df-perf 19432  df-cn 19522  df-cnp 19523  df-haus 19610  df-cmp 19681  df-tx 19826  df-hmeo 20019  df-fil 20110  df-fm 20202  df-flim 20203  df-flf 20204  df-xms 20586  df-ms 20587  df-tms 20588  df-cncf 21145  df-limc 22033  df-dv 22034
This theorem is referenced by:  cmvth  22155  lhop1lem  22177
  Copyright terms: Public domain W3C validator