MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnmpt2 Structured version   Unicode version

Theorem rnmpt2 6396
Description: The range of an operation given by the "maps to" notation. (Contributed by FL, 20-Jun-2011.)
Hypothesis
Ref Expression
rngop.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
rnmpt2  |-  ran  F  =  { z  |  E. x  e.  A  E. y  e.  B  z  =  C }
Distinct variable groups:    y, z, A    z, B    z, C    z, F    x, y, z
Allowed substitution hints:    A( x)    B( x, y)    C( x, y)    F( x, y)

Proof of Theorem rnmpt2
StepHypRef Expression
1 rngop.1 . . . 4  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
2 df-mpt2 6289 . . . 4  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
31, 2eqtri 2496 . . 3  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
43rneqi 5229 . 2  |-  ran  F  =  ran  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
5 rnoprab2 6370 . 2  |-  ran  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }  =  { z  |  E. x  e.  A  E. y  e.  B  z  =  C }
64, 5eqtri 2496 1  |-  ran  F  =  { z  |  E. x  e.  A  E. y  e.  B  z  =  C }
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    = wceq 1379    e. wcel 1767   {cab 2452   E.wrex 2815   ran crn 5000   {coprab 6285    |-> cmpt2 6286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-br 4448  df-opab 4506  df-cnv 5007  df-dm 5009  df-rn 5010  df-oprab 6288  df-mpt2 6289
This theorem is referenced by:  elrnmpt2g  6398  elrnmpt2  6399  ralrnmpt2  6401  dffi3  7891  ixpiunwdom  8017  qnnen  13808  txuni2  19829  txbas  19831  xkobval  19850  xkoopn  19853  txrest  19895  ptrescn  19903  tx1stc  19914  xkoptsub  19918  xkopt  19919  xkococn  19924  ptcmplem4  20318  met2ndci  20788  i1fadd  21865  i1fmul  21866  rnmpt2ss  27215  cnre2csqima  27557  qqhval2  27627  ptrest  29653  eldiophb  30322
  Copyright terms: Public domain W3C validator