MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngsubdir Structured version   Unicode version

Theorem rngsubdir 17025
Description: Ring multiplication distributes over subtraction. (subdir 9980 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
Hypotheses
Ref Expression
rngsubdi.b  |-  B  =  ( Base `  R
)
rngsubdi.t  |-  .x.  =  ( .r `  R )
rngsubdi.m  |-  .-  =  ( -g `  R )
rngsubdi.r  |-  ( ph  ->  R  e.  Ring )
rngsubdi.x  |-  ( ph  ->  X  e.  B )
rngsubdi.y  |-  ( ph  ->  Y  e.  B )
rngsubdi.z  |-  ( ph  ->  Z  e.  B )
Assertion
Ref Expression
rngsubdir  |-  ( ph  ->  ( ( X  .-  Y )  .x.  Z
)  =  ( ( X  .x.  Z ) 
.-  ( Y  .x.  Z ) ) )

Proof of Theorem rngsubdir
StepHypRef Expression
1 rngsubdi.r . . . 4  |-  ( ph  ->  R  e.  Ring )
2 rngsubdi.x . . . 4  |-  ( ph  ->  X  e.  B )
3 rnggrp 16984 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Grp )
41, 3syl 16 . . . . 5  |-  ( ph  ->  R  e.  Grp )
5 rngsubdi.y . . . . 5  |-  ( ph  ->  Y  e.  B )
6 rngsubdi.b . . . . . 6  |-  B  =  ( Base `  R
)
7 eqid 2460 . . . . . 6  |-  ( invg `  R )  =  ( invg `  R )
86, 7grpinvcl 15889 . . . . 5  |-  ( ( R  e.  Grp  /\  Y  e.  B )  ->  ( ( invg `  R ) `  Y
)  e.  B )
94, 5, 8syl2anc 661 . . . 4  |-  ( ph  ->  ( ( invg `  R ) `  Y
)  e.  B )
10 rngsubdi.z . . . 4  |-  ( ph  ->  Z  e.  B )
11 eqid 2460 . . . . 5  |-  ( +g  `  R )  =  ( +g  `  R )
12 rngsubdi.t . . . . 5  |-  .x.  =  ( .r `  R )
136, 11, 12rngdir 16998 . . . 4  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  ( ( invg `  R ) `  Y
)  e.  B  /\  Z  e.  B )
)  ->  ( ( X ( +g  `  R
) ( ( invg `  R ) `
 Y ) ) 
.x.  Z )  =  ( ( X  .x.  Z ) ( +g  `  R ) ( ( ( invg `  R ) `  Y
)  .x.  Z )
) )
141, 2, 9, 10, 13syl13anc 1225 . . 3  |-  ( ph  ->  ( ( X ( +g  `  R ) ( ( invg `  R ) `  Y
) )  .x.  Z
)  =  ( ( X  .x.  Z ) ( +g  `  R
) ( ( ( invg `  R
) `  Y )  .x.  Z ) ) )
156, 12, 7, 1, 5, 10rngmneg1 17021 . . . 4  |-  ( ph  ->  ( ( ( invg `  R ) `
 Y )  .x.  Z )  =  ( ( invg `  R ) `  ( Y  .x.  Z ) ) )
1615oveq2d 6291 . . 3  |-  ( ph  ->  ( ( X  .x.  Z ) ( +g  `  R ) ( ( ( invg `  R ) `  Y
)  .x.  Z )
)  =  ( ( X  .x.  Z ) ( +g  `  R
) ( ( invg `  R ) `
 ( Y  .x.  Z ) ) ) )
1714, 16eqtrd 2501 . 2  |-  ( ph  ->  ( ( X ( +g  `  R ) ( ( invg `  R ) `  Y
) )  .x.  Z
)  =  ( ( X  .x.  Z ) ( +g  `  R
) ( ( invg `  R ) `
 ( Y  .x.  Z ) ) ) )
18 rngsubdi.m . . . . 5  |-  .-  =  ( -g `  R )
196, 11, 7, 18grpsubval 15887 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( X  .-  Y
)  =  ( X ( +g  `  R
) ( ( invg `  R ) `
 Y ) ) )
202, 5, 19syl2anc 661 . . 3  |-  ( ph  ->  ( X  .-  Y
)  =  ( X ( +g  `  R
) ( ( invg `  R ) `
 Y ) ) )
2120oveq1d 6290 . 2  |-  ( ph  ->  ( ( X  .-  Y )  .x.  Z
)  =  ( ( X ( +g  `  R
) ( ( invg `  R ) `
 Y ) ) 
.x.  Z ) )
226, 12rngcl 16992 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  .x.  Z )  e.  B )
231, 2, 10, 22syl3anc 1223 . . 3  |-  ( ph  ->  ( X  .x.  Z
)  e.  B )
246, 12rngcl 16992 . . . 4  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  Z  e.  B )  ->  ( Y  .x.  Z )  e.  B )
251, 5, 10, 24syl3anc 1223 . . 3  |-  ( ph  ->  ( Y  .x.  Z
)  e.  B )
266, 11, 7, 18grpsubval 15887 . . 3  |-  ( ( ( X  .x.  Z
)  e.  B  /\  ( Y  .x.  Z )  e.  B )  -> 
( ( X  .x.  Z )  .-  ( Y  .x.  Z ) )  =  ( ( X 
.x.  Z ) ( +g  `  R ) ( ( invg `  R ) `  ( Y  .x.  Z ) ) ) )
2723, 25, 26syl2anc 661 . 2  |-  ( ph  ->  ( ( X  .x.  Z )  .-  ( Y  .x.  Z ) )  =  ( ( X 
.x.  Z ) ( +g  `  R ) ( ( invg `  R ) `  ( Y  .x.  Z ) ) ) )
2817, 21, 273eqtr4d 2511 1  |-  ( ph  ->  ( ( X  .-  Y )  .x.  Z
)  =  ( ( X  .x.  Z ) 
.-  ( Y  .x.  Z ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1374    e. wcel 1762   ` cfv 5579  (class class class)co 6275   Basecbs 14479   +g cplusg 14544   .rcmulr 14545   Grpcgrp 15716   invgcminusg 15717   -gcsg 15719   Ringcrg 16979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-er 7301  df-en 7507  df-dom 7508  df-sdom 7509  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-nn 10526  df-2 10583  df-ndx 14482  df-slot 14483  df-base 14484  df-sets 14485  df-plusg 14557  df-0g 14686  df-mnd 15721  df-grp 15851  df-minusg 15852  df-sbg 15853  df-mgp 16925  df-ur 16937  df-rng 16981
This theorem is referenced by:  2idlcpbl  17657  cpmadugsumfi  19138  nrgdsdir  20903  nrginvrcnlem  20927  orngrmulle  27445
  Copyright terms: Public domain W3C validator