MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngsubdir Structured version   Unicode version

Theorem rngsubdir 17763
Description: Ring multiplication distributes over subtraction. (subdir 10052 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
Hypotheses
Ref Expression
ringsubdi.b  |-  B  =  ( Base `  R
)
ringsubdi.t  |-  .x.  =  ( .r `  R )
ringsubdi.m  |-  .-  =  ( -g `  R )
ringsubdi.r  |-  ( ph  ->  R  e.  Ring )
ringsubdi.x  |-  ( ph  ->  X  e.  B )
ringsubdi.y  |-  ( ph  ->  Y  e.  B )
ringsubdi.z  |-  ( ph  ->  Z  e.  B )
Assertion
Ref Expression
rngsubdir  |-  ( ph  ->  ( ( X  .-  Y )  .x.  Z
)  =  ( ( X  .x.  Z ) 
.-  ( Y  .x.  Z ) ) )

Proof of Theorem rngsubdir
StepHypRef Expression
1 ringsubdi.r . . . 4  |-  ( ph  ->  R  e.  Ring )
2 ringsubdi.x . . . 4  |-  ( ph  ->  X  e.  B )
3 ringgrp 17720 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Grp )
41, 3syl 17 . . . . 5  |-  ( ph  ->  R  e.  Grp )
5 ringsubdi.y . . . . 5  |-  ( ph  ->  Y  e.  B )
6 ringsubdi.b . . . . . 6  |-  B  =  ( Base `  R
)
7 eqid 2429 . . . . . 6  |-  ( invg `  R )  =  ( invg `  R )
86, 7grpinvcl 16662 . . . . 5  |-  ( ( R  e.  Grp  /\  Y  e.  B )  ->  ( ( invg `  R ) `  Y
)  e.  B )
94, 5, 8syl2anc 665 . . . 4  |-  ( ph  ->  ( ( invg `  R ) `  Y
)  e.  B )
10 ringsubdi.z . . . 4  |-  ( ph  ->  Z  e.  B )
11 eqid 2429 . . . . 5  |-  ( +g  `  R )  =  ( +g  `  R )
12 ringsubdi.t . . . . 5  |-  .x.  =  ( .r `  R )
136, 11, 12ringdir 17735 . . . 4  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  ( ( invg `  R ) `  Y
)  e.  B  /\  Z  e.  B )
)  ->  ( ( X ( +g  `  R
) ( ( invg `  R ) `
 Y ) ) 
.x.  Z )  =  ( ( X  .x.  Z ) ( +g  `  R ) ( ( ( invg `  R ) `  Y
)  .x.  Z )
) )
141, 2, 9, 10, 13syl13anc 1266 . . 3  |-  ( ph  ->  ( ( X ( +g  `  R ) ( ( invg `  R ) `  Y
) )  .x.  Z
)  =  ( ( X  .x.  Z ) ( +g  `  R
) ( ( ( invg `  R
) `  Y )  .x.  Z ) ) )
156, 12, 7, 1, 5, 10ringmneg1 17759 . . . 4  |-  ( ph  ->  ( ( ( invg `  R ) `
 Y )  .x.  Z )  =  ( ( invg `  R ) `  ( Y  .x.  Z ) ) )
1615oveq2d 6321 . . 3  |-  ( ph  ->  ( ( X  .x.  Z ) ( +g  `  R ) ( ( ( invg `  R ) `  Y
)  .x.  Z )
)  =  ( ( X  .x.  Z ) ( +g  `  R
) ( ( invg `  R ) `
 ( Y  .x.  Z ) ) ) )
1714, 16eqtrd 2470 . 2  |-  ( ph  ->  ( ( X ( +g  `  R ) ( ( invg `  R ) `  Y
) )  .x.  Z
)  =  ( ( X  .x.  Z ) ( +g  `  R
) ( ( invg `  R ) `
 ( Y  .x.  Z ) ) ) )
18 ringsubdi.m . . . . 5  |-  .-  =  ( -g `  R )
196, 11, 7, 18grpsubval 16660 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( X  .-  Y
)  =  ( X ( +g  `  R
) ( ( invg `  R ) `
 Y ) ) )
202, 5, 19syl2anc 665 . . 3  |-  ( ph  ->  ( X  .-  Y
)  =  ( X ( +g  `  R
) ( ( invg `  R ) `
 Y ) ) )
2120oveq1d 6320 . 2  |-  ( ph  ->  ( ( X  .-  Y )  .x.  Z
)  =  ( ( X ( +g  `  R
) ( ( invg `  R ) `
 Y ) ) 
.x.  Z ) )
226, 12ringcl 17729 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  .x.  Z )  e.  B )
231, 2, 10, 22syl3anc 1264 . . 3  |-  ( ph  ->  ( X  .x.  Z
)  e.  B )
246, 12ringcl 17729 . . . 4  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  Z  e.  B )  ->  ( Y  .x.  Z )  e.  B )
251, 5, 10, 24syl3anc 1264 . . 3  |-  ( ph  ->  ( Y  .x.  Z
)  e.  B )
266, 11, 7, 18grpsubval 16660 . . 3  |-  ( ( ( X  .x.  Z
)  e.  B  /\  ( Y  .x.  Z )  e.  B )  -> 
( ( X  .x.  Z )  .-  ( Y  .x.  Z ) )  =  ( ( X 
.x.  Z ) ( +g  `  R ) ( ( invg `  R ) `  ( Y  .x.  Z ) ) ) )
2723, 25, 26syl2anc 665 . 2  |-  ( ph  ->  ( ( X  .x.  Z )  .-  ( Y  .x.  Z ) )  =  ( ( X 
.x.  Z ) ( +g  `  R ) ( ( invg `  R ) `  ( Y  .x.  Z ) ) ) )
2817, 21, 273eqtr4d 2480 1  |-  ( ph  ->  ( ( X  .-  Y )  .x.  Z
)  =  ( ( X  .x.  Z ) 
.-  ( Y  .x.  Z ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1437    e. wcel 1870   ` cfv 5601  (class class class)co 6305   Basecbs 15084   +g cplusg 15152   .rcmulr 15153   Grpcgrp 16620   invgcminusg 16621   -gcsg 16622   Ringcrg 17715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-er 7371  df-en 7578  df-dom 7579  df-sdom 7580  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-nn 10610  df-2 10668  df-ndx 15087  df-slot 15088  df-base 15089  df-sets 15090  df-plusg 15165  df-0g 15299  df-mgm 16439  df-sgrp 16478  df-mnd 16488  df-grp 16624  df-minusg 16625  df-sbg 16626  df-mgp 17659  df-ur 17671  df-ring 17717
This theorem is referenced by:  2idlcpbl  18393  cpmadugsumfi  19832  nrgdsdir  21600  nrginvrcnlem  21624  orngrmulle  28408  lidldomn1  38678
  Copyright terms: Public domain W3C validator