MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngsubdi Structured version   Unicode version

Theorem rngsubdi 16680
Description: Ring multiplication distributes over subtraction. (subdi 9774 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
Hypotheses
Ref Expression
rngsubdi.b  |-  B  =  ( Base `  R
)
rngsubdi.t  |-  .x.  =  ( .r `  R )
rngsubdi.m  |-  .-  =  ( -g `  R )
rngsubdi.r  |-  ( ph  ->  R  e.  Ring )
rngsubdi.x  |-  ( ph  ->  X  e.  B )
rngsubdi.y  |-  ( ph  ->  Y  e.  B )
rngsubdi.z  |-  ( ph  ->  Z  e.  B )
Assertion
Ref Expression
rngsubdi  |-  ( ph  ->  ( X  .x.  ( Y  .-  Z ) )  =  ( ( X 
.x.  Y )  .-  ( X  .x.  Z ) ) )

Proof of Theorem rngsubdi
StepHypRef Expression
1 rngsubdi.r . . . 4  |-  ( ph  ->  R  e.  Ring )
2 rngsubdi.x . . . 4  |-  ( ph  ->  X  e.  B )
3 rngsubdi.y . . . 4  |-  ( ph  ->  Y  e.  B )
4 rnggrp 16640 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Grp )
51, 4syl 16 . . . . 5  |-  ( ph  ->  R  e.  Grp )
6 rngsubdi.z . . . . 5  |-  ( ph  ->  Z  e.  B )
7 rngsubdi.b . . . . . 6  |-  B  =  ( Base `  R
)
8 eqid 2441 . . . . . 6  |-  ( invg `  R )  =  ( invg `  R )
97, 8grpinvcl 15576 . . . . 5  |-  ( ( R  e.  Grp  /\  Z  e.  B )  ->  ( ( invg `  R ) `  Z
)  e.  B )
105, 6, 9syl2anc 656 . . . 4  |-  ( ph  ->  ( ( invg `  R ) `  Z
)  e.  B )
11 eqid 2441 . . . . 5  |-  ( +g  `  R )  =  ( +g  `  R )
12 rngsubdi.t . . . . 5  |-  .x.  =  ( .r `  R )
137, 11, 12rngdi 16653 . . . 4  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  ( ( invg `  R ) `  Z
)  e.  B ) )  ->  ( X  .x.  ( Y ( +g  `  R ) ( ( invg `  R
) `  Z )
) )  =  ( ( X  .x.  Y
) ( +g  `  R
) ( X  .x.  ( ( invg `  R ) `  Z
) ) ) )
141, 2, 3, 10, 13syl13anc 1215 . . 3  |-  ( ph  ->  ( X  .x.  ( Y ( +g  `  R
) ( ( invg `  R ) `
 Z ) ) )  =  ( ( X  .x.  Y ) ( +g  `  R
) ( X  .x.  ( ( invg `  R ) `  Z
) ) ) )
157, 12, 8, 1, 2, 6rngmneg2 16678 . . . 4  |-  ( ph  ->  ( X  .x.  (
( invg `  R ) `  Z
) )  =  ( ( invg `  R ) `  ( X  .x.  Z ) ) )
1615oveq2d 6106 . . 3  |-  ( ph  ->  ( ( X  .x.  Y ) ( +g  `  R ) ( X 
.x.  ( ( invg `  R ) `
 Z ) ) )  =  ( ( X  .x.  Y ) ( +g  `  R
) ( ( invg `  R ) `
 ( X  .x.  Z ) ) ) )
1714, 16eqtrd 2473 . 2  |-  ( ph  ->  ( X  .x.  ( Y ( +g  `  R
) ( ( invg `  R ) `
 Z ) ) )  =  ( ( X  .x.  Y ) ( +g  `  R
) ( ( invg `  R ) `
 ( X  .x.  Z ) ) ) )
18 rngsubdi.m . . . . 5  |-  .-  =  ( -g `  R )
197, 11, 8, 18grpsubval 15574 . . . 4  |-  ( ( Y  e.  B  /\  Z  e.  B )  ->  ( Y  .-  Z
)  =  ( Y ( +g  `  R
) ( ( invg `  R ) `
 Z ) ) )
203, 6, 19syl2anc 656 . . 3  |-  ( ph  ->  ( Y  .-  Z
)  =  ( Y ( +g  `  R
) ( ( invg `  R ) `
 Z ) ) )
2120oveq2d 6106 . 2  |-  ( ph  ->  ( X  .x.  ( Y  .-  Z ) )  =  ( X  .x.  ( Y ( +g  `  R
) ( ( invg `  R ) `
 Z ) ) ) )
227, 12rngcl 16648 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .x.  Y )  e.  B )
231, 2, 3, 22syl3anc 1213 . . 3  |-  ( ph  ->  ( X  .x.  Y
)  e.  B )
247, 12rngcl 16648 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  .x.  Z )  e.  B )
251, 2, 6, 24syl3anc 1213 . . 3  |-  ( ph  ->  ( X  .x.  Z
)  e.  B )
267, 11, 8, 18grpsubval 15574 . . 3  |-  ( ( ( X  .x.  Y
)  e.  B  /\  ( X  .x.  Z )  e.  B )  -> 
( ( X  .x.  Y )  .-  ( X  .x.  Z ) )  =  ( ( X 
.x.  Y ) ( +g  `  R ) ( ( invg `  R ) `  ( X  .x.  Z ) ) ) )
2723, 25, 26syl2anc 656 . 2  |-  ( ph  ->  ( ( X  .x.  Y )  .-  ( X  .x.  Z ) )  =  ( ( X 
.x.  Y ) ( +g  `  R ) ( ( invg `  R ) `  ( X  .x.  Z ) ) ) )
2817, 21, 273eqtr4d 2483 1  |-  ( ph  ->  ( X  .x.  ( Y  .-  Z ) )  =  ( ( X 
.x.  Y )  .-  ( X  .x.  Z ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 1761   ` cfv 5415  (class class class)co 6090   Basecbs 14170   +g cplusg 14234   .rcmulr 14235   Grpcgrp 15406   invgcminusg 15407   -gcsg 15409   Ringcrg 16635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-2 10376  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-plusg 14247  df-0g 14376  df-mnd 15411  df-grp 15538  df-minusg 15539  df-sbg 15540  df-mgp 16582  df-ur 16594  df-rng 16637
This theorem is referenced by:  2idlcpbl  17294  mdetuni0  18386  nrgdsdi  20205  nrginvrcnlem  20230  ply1divmo  21566  ornglmulle  26208
  Copyright terms: Public domain W3C validator