MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngsrg Structured version   Unicode version

Theorem rngsrg 17017
Description: Any ring is also a semiring. (Contributed by Thierry Arnoux, 1-Apr-2018.)
Assertion
Ref Expression
rngsrg  |-  ( R  e.  Ring  ->  R  e. SRing
)

Proof of Theorem rngsrg
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rngcmn 17009 . . 3  |-  ( R  e.  Ring  ->  R  e. CMnd
)
2 eqid 2460 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
3 eqid 2460 . . . . . 6  |-  (mulGrp `  R )  =  (mulGrp `  R )
4 eqid 2460 . . . . . 6  |-  ( +g  `  R )  =  ( +g  `  R )
5 eqid 2460 . . . . . 6  |-  ( .r
`  R )  =  ( .r `  R
)
62, 3, 4, 5isrng 16983 . . . . 5  |-  ( R  e.  Ring  <->  ( R  e. 
Grp  /\  (mulGrp `  R
)  e.  Mnd  /\  A. x  e.  ( Base `  R ) A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) ) ) )
76biimpi 194 . . . 4  |-  ( R  e.  Ring  ->  ( R  e.  Grp  /\  (mulGrp `  R )  e.  Mnd  /\ 
A. x  e.  (
Base `  R ) A. y  e.  ( Base `  R ) A. z  e.  ( Base `  R ) ( ( x ( .r `  R ) ( y ( +g  `  R
) z ) )  =  ( ( x ( .r `  R
) y ) ( +g  `  R ) ( x ( .r
`  R ) z ) )  /\  (
( x ( +g  `  R ) y ) ( .r `  R
) z )  =  ( ( x ( .r `  R ) z ) ( +g  `  R ) ( y ( .r `  R
) z ) ) ) ) )
87simp2d 1004 . . 3  |-  ( R  e.  Ring  ->  (mulGrp `  R )  e.  Mnd )
97simp3d 1005 . . . 4  |-  ( R  e.  Ring  ->  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) ) )
10 eqid 2460 . . . . . . 7  |-  ( 0g
`  R )  =  ( 0g `  R
)
112, 5, 10rnglz 17015 . . . . . 6  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  R
) )  ->  (
( 0g `  R
) ( .r `  R ) x )  =  ( 0g `  R ) )
122, 5, 10rngrz 17016 . . . . . 6  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  R
) )  ->  (
x ( .r `  R ) ( 0g
`  R ) )  =  ( 0g `  R ) )
1311, 12jca 532 . . . . 5  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  R
) )  ->  (
( ( 0g `  R ) ( .r
`  R ) x )  =  ( 0g
`  R )  /\  ( x ( .r
`  R ) ( 0g `  R ) )  =  ( 0g
`  R ) ) )
1413ralrimiva 2871 . . . 4  |-  ( R  e.  Ring  ->  A. x  e.  ( Base `  R
) ( ( ( 0g `  R ) ( .r `  R
) x )  =  ( 0g `  R
)  /\  ( x
( .r `  R
) ( 0g `  R ) )  =  ( 0g `  R
) ) )
15 r19.26 2982 . . . 4  |-  ( A. x  e.  ( Base `  R ) ( A. y  e.  ( Base `  R ) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) )  /\  ( ( ( 0g `  R ) ( .r `  R
) x )  =  ( 0g `  R
)  /\  ( x
( .r `  R
) ( 0g `  R ) )  =  ( 0g `  R
) ) )  <->  ( A. x  e.  ( Base `  R ) A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) )  /\  A. x  e.  ( Base `  R
) ( ( ( 0g `  R ) ( .r `  R
) x )  =  ( 0g `  R
)  /\  ( x
( .r `  R
) ( 0g `  R ) )  =  ( 0g `  R
) ) ) )
169, 14, 15sylanbrc 664 . . 3  |-  ( R  e.  Ring  ->  A. x  e.  ( Base `  R
) ( A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) )  /\  ( ( ( 0g `  R ) ( .r `  R
) x )  =  ( 0g `  R
)  /\  ( x
( .r `  R
) ( 0g `  R ) )  =  ( 0g `  R
) ) ) )
171, 8, 163jca 1171 . 2  |-  ( R  e.  Ring  ->  ( R  e. CMnd  /\  (mulGrp `  R
)  e.  Mnd  /\  A. x  e.  ( Base `  R ) ( A. y  e.  ( Base `  R ) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) )  /\  ( ( ( 0g `  R ) ( .r `  R
) x )  =  ( 0g `  R
)  /\  ( x
( .r `  R
) ( 0g `  R ) )  =  ( 0g `  R
) ) ) ) )
182, 3, 4, 5, 10issrg 16942 . 2  |-  ( R  e. SRing 
<->  ( R  e. CMnd  /\  (mulGrp `  R )  e. 
Mnd  /\  A. x  e.  ( Base `  R
) ( A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) )  /\  ( ( ( 0g `  R ) ( .r `  R
) x )  =  ( 0g `  R
)  /\  ( x
( .r `  R
) ( 0g `  R ) )  =  ( 0g `  R
) ) ) ) )
1917, 18sylibr 212 1  |-  ( R  e.  Ring  ->  R  e. SRing
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762   A.wral 2807   ` cfv 5579  (class class class)co 6275   Basecbs 14479   +g cplusg 14544   .rcmulr 14545   0gc0g 14684   Mndcmnd 15715   Grpcgrp 15716  CMndccmn 16587  mulGrpcmgp 16924  SRingcsrg 16940   Ringcrg 16979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-recs 7032  df-rdg 7066  df-er 7301  df-en 7507  df-dom 7508  df-sdom 7509  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-nn 10526  df-2 10583  df-ndx 14482  df-slot 14483  df-base 14484  df-sets 14485  df-plusg 14557  df-0g 14686  df-mnd 15721  df-grp 15851  df-minusg 15852  df-cmn 16589  df-abl 16590  df-mgp 16925  df-ur 16937  df-srg 16941  df-rng 16981
This theorem is referenced by:  crngbinom  17047  mplcoe5lem  17894  mdet1  18863  lmodslmd  27259
  Copyright terms: Public domain W3C validator