MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngrz Structured version   Unicode version

Theorem rngrz 16618
Description: The zero of a unital ring is a right absorbing element. (Contributed by FL, 31-Aug-2009.)
Hypotheses
Ref Expression
rngz.b  |-  B  =  ( Base `  R
)
rngz.t  |-  .x.  =  ( .r `  R )
rngz.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
rngrz  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .x.  .0.  )  =  .0.  )

Proof of Theorem rngrz
StepHypRef Expression
1 rnggrp 16586 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Grp )
2 rngz.b . . . . . . . 8  |-  B  =  ( Base `  R
)
3 rngz.z . . . . . . . 8  |-  .0.  =  ( 0g `  R )
42, 3grpidcl 15546 . . . . . . 7  |-  ( R  e.  Grp  ->  .0.  e.  B )
5 eqid 2433 . . . . . . . 8  |-  ( +g  `  R )  =  ( +g  `  R )
62, 5, 3grplid 15548 . . . . . . 7  |-  ( ( R  e.  Grp  /\  .0.  e.  B )  -> 
(  .0.  ( +g  `  R )  .0.  )  =  .0.  )
74, 6mpdan 661 . . . . . 6  |-  ( R  e.  Grp  ->  (  .0.  ( +g  `  R
)  .0.  )  =  .0.  )
81, 7syl 16 . . . . 5  |-  ( R  e.  Ring  ->  (  .0.  ( +g  `  R
)  .0.  )  =  .0.  )
98adantr 462 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (  .0.  ( +g  `  R
)  .0.  )  =  .0.  )
109oveq2d 6096 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .x.  (  .0.  ( +g  `  R )  .0.  ) )  =  ( X  .x.  .0.  )
)
11 simpr 458 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  X  e.  B )
121, 4syl 16 . . . . . 6  |-  ( R  e.  Ring  ->  .0.  e.  B )
1312adantr 462 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  .0.  e.  B )
1411, 13, 133jca 1161 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  e.  B  /\  .0.  e.  B  /\  .0.  e.  B ) )
15 rngz.t . . . . 5  |-  .x.  =  ( .r `  R )
162, 5, 15rngdi 16599 . . . 4  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  .0.  e.  B  /\  .0.  e.  B ) )  -> 
( X  .x.  (  .0.  ( +g  `  R
)  .0.  ) )  =  ( ( X 
.x.  .0.  ) ( +g  `  R ) ( X  .x.  .0.  )
) )
1714, 16syldan 467 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .x.  (  .0.  ( +g  `  R )  .0.  ) )  =  ( ( X  .x.  .0.  ) ( +g  `  R
) ( X  .x.  .0.  ) ) )
181adantr 462 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  R  e.  Grp )
192, 15rngcl 16594 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  .0.  e.  B )  ->  ( X  .x.  .0.  )  e.  B )
2013, 19mpd3an3 1308 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .x.  .0.  )  e.  B )
212, 5, 3grplid 15548 . . . . 5  |-  ( ( R  e.  Grp  /\  ( X  .x.  .0.  )  e.  B )  ->  (  .0.  ( +g  `  R
) ( X  .x.  .0.  ) )  =  ( X  .x.  .0.  )
)
2221eqcomd 2438 . . . 4  |-  ( ( R  e.  Grp  /\  ( X  .x.  .0.  )  e.  B )  ->  ( X  .x.  .0.  )  =  (  .0.  ( +g  `  R ) ( X 
.x.  .0.  ) )
)
2318, 20, 22syl2anc 654 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .x.  .0.  )  =  (  .0.  ( +g  `  R ) ( X 
.x.  .0.  ) )
)
2410, 17, 233eqtr3d 2473 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
( X  .x.  .0.  ) ( +g  `  R
) ( X  .x.  .0.  ) )  =  (  .0.  ( +g  `  R
) ( X  .x.  .0.  ) ) )
252, 5grprcan 15551 . . 3  |-  ( ( R  e.  Grp  /\  ( ( X  .x.  .0.  )  e.  B  /\  .0.  e.  B  /\  ( X  .x.  .0.  )  e.  B ) )  -> 
( ( ( X 
.x.  .0.  ) ( +g  `  R ) ( X  .x.  .0.  )
)  =  (  .0.  ( +g  `  R
) ( X  .x.  .0.  ) )  <->  ( X  .x.  .0.  )  =  .0.  ) )
2618, 20, 13, 20, 25syl13anc 1213 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
( ( X  .x.  .0.  ) ( +g  `  R
) ( X  .x.  .0.  ) )  =  (  .0.  ( +g  `  R
) ( X  .x.  .0.  ) )  <->  ( X  .x.  .0.  )  =  .0.  ) )
2724, 26mpbid 210 1  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .x.  .0.  )  =  .0.  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 958    = wceq 1362    e. wcel 1755   ` cfv 5406  (class class class)co 6080   Basecbs 14157   +g cplusg 14221   .rcmulr 14222   0gc0g 14361   Grpcgrp 15393   Ringcrg 16577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-recs 6818  df-rdg 6852  df-er 7089  df-en 7299  df-dom 7300  df-sdom 7301  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-nn 10311  df-2 10368  df-ndx 14160  df-slot 14161  df-base 14162  df-sets 14163  df-plusg 14234  df-0g 14363  df-mnd 15398  df-grp 15525  df-mgp 16566  df-rng 16580
This theorem is referenced by:  rngnegr  16621  gsummgp0  16634  gsumdixpOLD  16635  gsumdixp  16636  dvdsr02  16682  isdrng2  16766  drngmul0or  16777  cntzsubr  16821  isabvd  16829  lmodvs0  16906  rrgeq0  17283  unitrrg  17287  domneq0  17291  psrridm  17410  psrridmOLD  17411  mpllsslem  17445  mpllsslemOLD  17447  mplsubrglem  17451  mplsubrglemOLD  17452  mplcoe1  17478  mplmon2  17507  evlslem4OLD  17518  evlslem4  17519  coe1tmmul2  17627  ocvlss  17939  frlmphl  18048  uvcresum  18060  mamurid  18147  matsc  18183  mulmarep1el  18225  mdet1  18250  mdetero  18258  mdetunilem8  18267  mdetunilem9  18268  mdetuni0  18269  maducoeval2  18288  madugsum  18291  smadiadetlem1a  18311  smadiadetglem2  18320  mdegvscale  21431  mdegmullem  21434  coe1mul3  21456  deg1mul3le  21473  ply1divex  21493  ply1rem  21520  fta1blem  21525  rngsrg  26043  kerunit  26144  cntzsdrg  29404  mgpsumz  30594  domnmsuppn0  30613  rmsuppss  30614  lincresunit2  30721  lfl0f  32287  lfl0sc  32300  lkrlss  32313  lcfrlem33  34793  hdmapinvlem3  35141  hdmapglem7b  35149
  Copyright terms: Public domain W3C validator