MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngrz Structured version   Unicode version

Theorem rngrz 16670
Description: The zero of a unital ring is a right-absorbing element. (Contributed by FL, 31-Aug-2009.)
Hypotheses
Ref Expression
rngz.b  |-  B  =  ( Base `  R
)
rngz.t  |-  .x.  =  ( .r `  R )
rngz.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
rngrz  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .x.  .0.  )  =  .0.  )

Proof of Theorem rngrz
StepHypRef Expression
1 rnggrp 16638 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Grp )
2 rngz.b . . . . . . . 8  |-  B  =  ( Base `  R
)
3 rngz.z . . . . . . . 8  |-  .0.  =  ( 0g `  R )
42, 3grpidcl 15557 . . . . . . 7  |-  ( R  e.  Grp  ->  .0.  e.  B )
5 eqid 2438 . . . . . . . 8  |-  ( +g  `  R )  =  ( +g  `  R )
62, 5, 3grplid 15559 . . . . . . 7  |-  ( ( R  e.  Grp  /\  .0.  e.  B )  -> 
(  .0.  ( +g  `  R )  .0.  )  =  .0.  )
74, 6mpdan 668 . . . . . 6  |-  ( R  e.  Grp  ->  (  .0.  ( +g  `  R
)  .0.  )  =  .0.  )
81, 7syl 16 . . . . 5  |-  ( R  e.  Ring  ->  (  .0.  ( +g  `  R
)  .0.  )  =  .0.  )
98adantr 465 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (  .0.  ( +g  `  R
)  .0.  )  =  .0.  )
109oveq2d 6102 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .x.  (  .0.  ( +g  `  R )  .0.  ) )  =  ( X  .x.  .0.  )
)
11 simpr 461 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  X  e.  B )
121, 4syl 16 . . . . . 6  |-  ( R  e.  Ring  ->  .0.  e.  B )
1312adantr 465 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  .0.  e.  B )
1411, 13, 133jca 1168 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  e.  B  /\  .0.  e.  B  /\  .0.  e.  B ) )
15 rngz.t . . . . 5  |-  .x.  =  ( .r `  R )
162, 5, 15rngdi 16651 . . . 4  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  .0.  e.  B  /\  .0.  e.  B ) )  -> 
( X  .x.  (  .0.  ( +g  `  R
)  .0.  ) )  =  ( ( X 
.x.  .0.  ) ( +g  `  R ) ( X  .x.  .0.  )
) )
1714, 16syldan 470 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .x.  (  .0.  ( +g  `  R )  .0.  ) )  =  ( ( X  .x.  .0.  ) ( +g  `  R
) ( X  .x.  .0.  ) ) )
181adantr 465 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  R  e.  Grp )
192, 15rngcl 16646 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  .0.  e.  B )  ->  ( X  .x.  .0.  )  e.  B )
2013, 19mpd3an3 1315 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .x.  .0.  )  e.  B )
212, 5, 3grplid 15559 . . . . 5  |-  ( ( R  e.  Grp  /\  ( X  .x.  .0.  )  e.  B )  ->  (  .0.  ( +g  `  R
) ( X  .x.  .0.  ) )  =  ( X  .x.  .0.  )
)
2221eqcomd 2443 . . . 4  |-  ( ( R  e.  Grp  /\  ( X  .x.  .0.  )  e.  B )  ->  ( X  .x.  .0.  )  =  (  .0.  ( +g  `  R ) ( X 
.x.  .0.  ) )
)
2318, 20, 22syl2anc 661 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .x.  .0.  )  =  (  .0.  ( +g  `  R ) ( X 
.x.  .0.  ) )
)
2410, 17, 233eqtr3d 2478 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
( X  .x.  .0.  ) ( +g  `  R
) ( X  .x.  .0.  ) )  =  (  .0.  ( +g  `  R
) ( X  .x.  .0.  ) ) )
252, 5grprcan 15562 . . 3  |-  ( ( R  e.  Grp  /\  ( ( X  .x.  .0.  )  e.  B  /\  .0.  e.  B  /\  ( X  .x.  .0.  )  e.  B ) )  -> 
( ( ( X 
.x.  .0.  ) ( +g  `  R ) ( X  .x.  .0.  )
)  =  (  .0.  ( +g  `  R
) ( X  .x.  .0.  ) )  <->  ( X  .x.  .0.  )  =  .0.  ) )
2618, 20, 13, 20, 25syl13anc 1220 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
( ( X  .x.  .0.  ) ( +g  `  R
) ( X  .x.  .0.  ) )  =  (  .0.  ( +g  `  R
) ( X  .x.  .0.  ) )  <->  ( X  .x.  .0.  )  =  .0.  ) )
2724, 26mpbid 210 1  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .x.  .0.  )  =  .0.  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   ` cfv 5413  (class class class)co 6086   Basecbs 14166   +g cplusg 14230   .rcmulr 14231   0gc0g 14370   Grpcgrp 15402   Ringcrg 16633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-recs 6824  df-rdg 6858  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-nn 10315  df-2 10372  df-ndx 14169  df-slot 14170  df-base 14171  df-sets 14172  df-plusg 14243  df-0g 14372  df-mnd 15407  df-grp 15536  df-mgp 16580  df-rng 16635
This theorem is referenced by:  rngsrg  16671  rngnegr  16674  gsummgp0  16687  gsumdixpOLD  16688  gsumdixp  16689  dvdsr02  16736  isdrng2  16820  drngmul0or  16831  cntzsubr  16875  isabvd  16883  lmodvs0  16960  rrgeq0  17338  unitrrg  17342  domneq0  17346  psrridm  17453  psrridmOLD  17454  mpllsslem  17488  mpllsslemOLD  17490  mplsubrglem  17494  mplsubrglemOLD  17495  mplcoe1  17521  mplmon2  17550  evlslem4OLD  17565  evlslem4  17566  coe1tmmul2  17704  ocvlss  18072  frlmphl  18181  uvcresum  18193  mamurid  18280  matsc  18316  mulmarep1el  18358  mdet1  18383  mdetero  18391  mdetunilem8  18400  mdetunilem9  18401  mdetuni0  18402  maducoeval2  18421  madugsum  18424  smadiadetlem1a  18444  smadiadetglem2  18453  mdegvscale  21521  mdegmullem  21524  coe1mul3  21546  deg1mul3le  21563  ply1divex  21583  ply1rem  21610  fta1blem  21615  kerunit  26242  cntzsdrg  29512  mgpsumz  30711  domnmsuppn0  30733  rmsuppss  30734  dmatmul  30799  mdetdiaglem  30824  lincresunit2  30901  lfl0f  32554  lfl0sc  32567  lkrlss  32580  lcfrlem33  35060  hdmapinvlem3  35408  hdmapglem7b  35416
  Copyright terms: Public domain W3C validator