MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngoueqz Structured version   Unicode version

Theorem rngoueqz 25549
Description: Obsolete as of 23-Jan-2020. Use 0ring01eqbi 18034 instead. In a unital ring the zero equals the unity iff the ring is the zero ring. (Contributed by FL, 14-Feb-2010.) (New usage is discouraged.)
Hypotheses
Ref Expression
uznzr.1  |-  G  =  ( 1st `  R
)
uznzr.2  |-  H  =  ( 2nd `  R
)
uznzr.3  |-  Z  =  (GId `  G )
uznzr.4  |-  U  =  (GId `  H )
uznzr.5  |-  X  =  ran  G
Assertion
Ref Expression
rngoueqz  |-  ( R  e.  RingOps  ->  ( X  ~~  1o 
<->  U  =  Z ) )

Proof of Theorem rngoueqz
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 uznzr.1 . . . 4  |-  G  =  ( 1st `  R
)
2 uznzr.5 . . . 4  |-  X  =  ran  G
3 uznzr.3 . . . 4  |-  Z  =  (GId `  G )
41, 2, 3rngo0cl 25517 . . 3  |-  ( R  e.  RingOps  ->  Z  e.  X
)
5 en1eqsn 7665 . . . . . 6  |-  ( ( Z  e.  X  /\  X  ~~  1o )  ->  X  =  { Z } )
61rneqi 5142 . . . . . . . 8  |-  ran  G  =  ran  ( 1st `  R
)
7 uznzr.2 . . . . . . . 8  |-  H  =  ( 2nd `  R
)
8 uznzr.4 . . . . . . . 8  |-  U  =  (GId `  H )
96, 7, 8rngo1cl 25548 . . . . . . 7  |-  ( R  e.  RingOps  ->  U  e.  ran  G )
10 eleq2 2455 . . . . . . . . . 10  |-  ( X  =  { Z }  ->  ( U  e.  X  <->  U  e.  { Z }
) )
1110biimpd 207 . . . . . . . . 9  |-  ( X  =  { Z }  ->  ( U  e.  X  ->  U  e.  { Z } ) )
12 elsni 3969 . . . . . . . . 9  |-  ( U  e.  { Z }  ->  U  =  Z )
1311, 12syl6com 35 . . . . . . . 8  |-  ( U  e.  X  ->  ( X  =  { Z }  ->  U  =  Z ) )
142eqcomi 2395 . . . . . . . 8  |-  ran  G  =  X
1513, 14eleq2s 2490 . . . . . . 7  |-  ( U  e.  ran  G  -> 
( X  =  { Z }  ->  U  =  Z ) )
169, 15syl 16 . . . . . 6  |-  ( R  e.  RingOps  ->  ( X  =  { Z }  ->  U  =  Z ) )
175, 16syl5com 30 . . . . 5  |-  ( ( Z  e.  X  /\  X  ~~  1o )  -> 
( R  e.  RingOps  ->  U  =  Z )
)
1817ex 432 . . . 4  |-  ( Z  e.  X  ->  ( X  ~~  1o  ->  ( R  e.  RingOps  ->  U  =  Z ) ) )
1918com23 78 . . 3  |-  ( Z  e.  X  ->  ( R  e.  RingOps  ->  ( X  ~~  1o  ->  U  =  Z ) ) )
204, 19mpcom 36 . 2  |-  ( R  e.  RingOps  ->  ( X  ~~  1o  ->  U  =  Z ) )
211, 2rngone0 25535 . . 3  |-  ( R  e.  RingOps  ->  X  =/=  (/) )
22 oveq2 6204 . . . . . 6  |-  ( U  =  Z  ->  (
x H U )  =  ( x H Z ) )
2322ralrimivw 2797 . . . . 5  |-  ( U  =  Z  ->  A. x  e.  X  ( x H U )  =  ( x H Z ) )
243, 2, 1, 7rngorz 25521 . . . . . . 7  |-  ( ( R  e.  RingOps  /\  x  e.  X )  ->  (
x H Z )  =  Z )
2524ralrimiva 2796 . . . . . 6  |-  ( R  e.  RingOps  ->  A. x  e.  X  ( x H Z )  =  Z )
262, 6eqtri 2411 . . . . . . . . 9  |-  X  =  ran  ( 1st `  R
)
277, 26, 8rngoridm 25544 . . . . . . . 8  |-  ( ( R  e.  RingOps  /\  x  e.  X )  ->  (
x H U )  =  x )
2827ralrimiva 2796 . . . . . . 7  |-  ( R  e.  RingOps  ->  A. x  e.  X  ( x H U )  =  x )
29 r19.26 2909 . . . . . . . . . 10  |-  ( A. x  e.  X  (
( x H U )  =  x  /\  ( x H U )  =  ( x H Z ) )  <-> 
( A. x  e.  X  ( x H U )  =  x  /\  A. x  e.  X  ( x H U )  =  ( x H Z ) ) )
30 r19.26 2909 . . . . . . . . . . . 12  |-  ( A. x  e.  X  (
( ( x H U )  =  x  /\  ( x H U )  =  ( x H Z ) )  /\  ( x H Z )  =  Z )  <->  ( A. x  e.  X  (
( x H U )  =  x  /\  ( x H U )  =  ( x H Z ) )  /\  A. x  e.  X  ( x H Z )  =  Z ) )
31 eqtr 2408 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  =  ( x H U )  /\  ( x H U )  =  ( x H Z ) )  ->  x  =  ( x H Z ) )
32 eqtr 2408 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  =  ( x H Z )  /\  ( x H Z )  =  Z )  ->  x  =  Z )
3332ex 432 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  ( x H Z )  ->  (
( x H Z )  =  Z  ->  x  =  Z )
)
3431, 33syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( x  =  ( x H U )  /\  ( x H U )  =  ( x H Z ) )  ->  ( ( x H Z )  =  Z  ->  x  =  Z ) )
3534ex 432 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( x H U )  ->  (
( x H U )  =  ( x H Z )  -> 
( ( x H Z )  =  Z  ->  x  =  Z ) ) )
3635eqcoms 2394 . . . . . . . . . . . . . . 15  |-  ( ( x H U )  =  x  ->  (
( x H U )  =  ( x H Z )  -> 
( ( x H Z )  =  Z  ->  x  =  Z ) ) )
3736imp31 430 . . . . . . . . . . . . . 14  |-  ( ( ( ( x H U )  =  x  /\  ( x H U )  =  ( x H Z ) )  /\  ( x H Z )  =  Z )  ->  x  =  Z )
3837ralimi 2775 . . . . . . . . . . . . 13  |-  ( A. x  e.  X  (
( ( x H U )  =  x  /\  ( x H U )  =  ( x H Z ) )  /\  ( x H Z )  =  Z )  ->  A. x  e.  X  x  =  Z )
39 eqsn 4105 . . . . . . . . . . . . . . 15  |-  ( X  =/=  (/)  ->  ( X  =  { Z }  <->  A. x  e.  X  x  =  Z ) )
40 ensn1g 7499 . . . . . . . . . . . . . . . . 17  |-  ( Z  e.  X  ->  { Z }  ~~  1o )
414, 40syl 16 . . . . . . . . . . . . . . . 16  |-  ( R  e.  RingOps  ->  { Z }  ~~  1o )
42 breq1 4370 . . . . . . . . . . . . . . . 16  |-  ( X  =  { Z }  ->  ( X  ~~  1o  <->  { Z }  ~~  1o ) )
4341, 42syl5ibr 221 . . . . . . . . . . . . . . 15  |-  ( X  =  { Z }  ->  ( R  e.  RingOps  ->  X  ~~  1o ) )
4439, 43syl6bir 229 . . . . . . . . . . . . . 14  |-  ( X  =/=  (/)  ->  ( A. x  e.  X  x  =  Z  ->  ( R  e.  RingOps  ->  X  ~~  1o ) ) )
4544com3l 81 . . . . . . . . . . . . 13  |-  ( A. x  e.  X  x  =  Z  ->  ( R  e.  RingOps  ->  ( X  =/=  (/)  ->  X  ~~  1o ) ) )
4638, 45syl 16 . . . . . . . . . . . 12  |-  ( A. x  e.  X  (
( ( x H U )  =  x  /\  ( x H U )  =  ( x H Z ) )  /\  ( x H Z )  =  Z )  ->  ( R  e.  RingOps  ->  ( X  =/=  (/)  ->  X  ~~  1o ) ) )
4730, 46sylbir 213 . . . . . . . . . . 11  |-  ( ( A. x  e.  X  ( ( x H U )  =  x  /\  ( x H U )  =  ( x H Z ) )  /\  A. x  e.  X  ( x H Z )  =  Z )  ->  ( R  e.  RingOps  ->  ( X  =/=  (/)  ->  X  ~~  1o ) ) )
4847ex 432 . . . . . . . . . 10  |-  ( A. x  e.  X  (
( x H U )  =  x  /\  ( x H U )  =  ( x H Z ) )  ->  ( A. x  e.  X  ( x H Z )  =  Z  ->  ( R  e.  RingOps 
->  ( X  =/=  (/)  ->  X  ~~  1o ) ) ) )
4929, 48sylbir 213 . . . . . . . . 9  |-  ( ( A. x  e.  X  ( x H U )  =  x  /\  A. x  e.  X  ( x H U )  =  ( x H Z ) )  -> 
( A. x  e.  X  ( x H Z )  =  Z  ->  ( R  e.  RingOps 
->  ( X  =/=  (/)  ->  X  ~~  1o ) ) ) )
5049ex 432 . . . . . . . 8  |-  ( A. x  e.  X  (
x H U )  =  x  ->  ( A. x  e.  X  ( x H U )  =  ( x H Z )  -> 
( A. x  e.  X  ( x H Z )  =  Z  ->  ( R  e.  RingOps 
->  ( X  =/=  (/)  ->  X  ~~  1o ) ) ) ) )
5150com24 87 . . . . . . 7  |-  ( A. x  e.  X  (
x H U )  =  x  ->  ( R  e.  RingOps  ->  ( A. x  e.  X  ( x H Z )  =  Z  -> 
( A. x  e.  X  ( x H U )  =  ( x H Z )  ->  ( X  =/=  (/)  ->  X  ~~  1o ) ) ) ) )
5228, 51mpcom 36 . . . . . 6  |-  ( R  e.  RingOps  ->  ( A. x  e.  X  ( x H Z )  =  Z  ->  ( A. x  e.  X  ( x H U )  =  ( x H Z )  ->  ( X  =/=  (/)  ->  X  ~~  1o ) ) ) )
5325, 52mpd 15 . . . . 5  |-  ( R  e.  RingOps  ->  ( A. x  e.  X  ( x H U )  =  ( x H Z )  ->  ( X  =/=  (/)  ->  X  ~~  1o ) ) )
5423, 53syl5com 30 . . . 4  |-  ( U  =  Z  ->  ( R  e.  RingOps  ->  ( X  =/=  (/)  ->  X  ~~  1o ) ) )
5554com13 80 . . 3  |-  ( X  =/=  (/)  ->  ( R  e.  RingOps  ->  ( U  =  Z  ->  X  ~~  1o ) ) )
5621, 55mpcom 36 . 2  |-  ( R  e.  RingOps  ->  ( U  =  Z  ->  X  ~~  1o ) )
5720, 56impbid 191 1  |-  ( R  e.  RingOps  ->  ( X  ~~  1o 
<->  U  =  Z ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1399    e. wcel 1826    =/= wne 2577   A.wral 2732   (/)c0 3711   {csn 3944   class class class wbr 4367   ran crn 4914   ` cfv 5496  (class class class)co 6196   1stc1st 6697   2ndc2nd 6698   1oc1o 7041    ~~ cen 7432  GIdcgi 25306   RingOpscrngo 25494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-iun 4245  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-riota 6158  df-ov 6199  df-om 6600  df-1st 6699  df-2nd 6700  df-1o 7048  df-er 7229  df-en 7436  df-dom 7437  df-sdom 7438  df-fin 7439  df-grpo 25310  df-gid 25311  df-ablo 25401  df-ass 25432  df-exid 25434  df-mgmOLD 25438  df-sgrOLD 25450  df-mndo 25457  df-rngo 25495
This theorem is referenced by:  dvrunz  25552  isdmn3  30637
  Copyright terms: Public domain W3C validator