MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngoueqz Structured version   Unicode version

Theorem rngoueqz 25304
Description: Obsolete as of 23-Jan-2020. Use 0ring01eqbi 17795 instead. In a unital ring the zero equals the unity iff the ring is the zero ring. (Contributed by FL, 14-Feb-2010.) (New usage is discouraged.)
Hypotheses
Ref Expression
uznzr.1  |-  G  =  ( 1st `  R
)
uznzr.2  |-  H  =  ( 2nd `  R
)
uznzr.3  |-  Z  =  (GId `  G )
uznzr.4  |-  U  =  (GId `  H )
uznzr.5  |-  X  =  ran  G
Assertion
Ref Expression
rngoueqz  |-  ( R  e.  RingOps  ->  ( X  ~~  1o 
<->  U  =  Z ) )

Proof of Theorem rngoueqz
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 uznzr.1 . . . 4  |-  G  =  ( 1st `  R
)
2 uznzr.5 . . . 4  |-  X  =  ran  G
3 uznzr.3 . . . 4  |-  Z  =  (GId `  G )
41, 2, 3rngo0cl 25272 . . 3  |-  ( R  e.  RingOps  ->  Z  e.  X
)
5 en1eqsn 7751 . . . . . 6  |-  ( ( Z  e.  X  /\  X  ~~  1o )  ->  X  =  { Z } )
61rneqi 5219 . . . . . . . 8  |-  ran  G  =  ran  ( 1st `  R
)
7 uznzr.2 . . . . . . . 8  |-  H  =  ( 2nd `  R
)
8 uznzr.4 . . . . . . . 8  |-  U  =  (GId `  H )
96, 7, 8rngo1cl 25303 . . . . . . 7  |-  ( R  e.  RingOps  ->  U  e.  ran  G )
10 eleq2 2516 . . . . . . . . . 10  |-  ( X  =  { Z }  ->  ( U  e.  X  <->  U  e.  { Z }
) )
1110biimpd 207 . . . . . . . . 9  |-  ( X  =  { Z }  ->  ( U  e.  X  ->  U  e.  { Z } ) )
12 elsni 4039 . . . . . . . . 9  |-  ( U  e.  { Z }  ->  U  =  Z )
1311, 12syl6com 35 . . . . . . . 8  |-  ( U  e.  X  ->  ( X  =  { Z }  ->  U  =  Z ) )
142eqcomi 2456 . . . . . . . 8  |-  ran  G  =  X
1513, 14eleq2s 2551 . . . . . . 7  |-  ( U  e.  ran  G  -> 
( X  =  { Z }  ->  U  =  Z ) )
169, 15syl 16 . . . . . 6  |-  ( R  e.  RingOps  ->  ( X  =  { Z }  ->  U  =  Z ) )
175, 16syl5com 30 . . . . 5  |-  ( ( Z  e.  X  /\  X  ~~  1o )  -> 
( R  e.  RingOps  ->  U  =  Z )
)
1817ex 434 . . . 4  |-  ( Z  e.  X  ->  ( X  ~~  1o  ->  ( R  e.  RingOps  ->  U  =  Z ) ) )
1918com23 78 . . 3  |-  ( Z  e.  X  ->  ( R  e.  RingOps  ->  ( X  ~~  1o  ->  U  =  Z ) ) )
204, 19mpcom 36 . 2  |-  ( R  e.  RingOps  ->  ( X  ~~  1o  ->  U  =  Z ) )
211, 2rngone0 25290 . . 3  |-  ( R  e.  RingOps  ->  X  =/=  (/) )
22 oveq2 6289 . . . . . 6  |-  ( U  =  Z  ->  (
x H U )  =  ( x H Z ) )
2322ralrimivw 2858 . . . . 5  |-  ( U  =  Z  ->  A. x  e.  X  ( x H U )  =  ( x H Z ) )
243, 2, 1, 7rngorz 25276 . . . . . . 7  |-  ( ( R  e.  RingOps  /\  x  e.  X )  ->  (
x H Z )  =  Z )
2524ralrimiva 2857 . . . . . 6  |-  ( R  e.  RingOps  ->  A. x  e.  X  ( x H Z )  =  Z )
262, 6eqtri 2472 . . . . . . . . 9  |-  X  =  ran  ( 1st `  R
)
277, 26, 8rngoridm 25299 . . . . . . . 8  |-  ( ( R  e.  RingOps  /\  x  e.  X )  ->  (
x H U )  =  x )
2827ralrimiva 2857 . . . . . . 7  |-  ( R  e.  RingOps  ->  A. x  e.  X  ( x H U )  =  x )
29 r19.26 2970 . . . . . . . . . 10  |-  ( A. x  e.  X  (
( x H U )  =  x  /\  ( x H U )  =  ( x H Z ) )  <-> 
( A. x  e.  X  ( x H U )  =  x  /\  A. x  e.  X  ( x H U )  =  ( x H Z ) ) )
30 r19.26 2970 . . . . . . . . . . . 12  |-  ( A. x  e.  X  (
( ( x H U )  =  x  /\  ( x H U )  =  ( x H Z ) )  /\  ( x H Z )  =  Z )  <->  ( A. x  e.  X  (
( x H U )  =  x  /\  ( x H U )  =  ( x H Z ) )  /\  A. x  e.  X  ( x H Z )  =  Z ) )
31 eqtr 2469 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  =  ( x H U )  /\  ( x H U )  =  ( x H Z ) )  ->  x  =  ( x H Z ) )
32 eqtr 2469 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  =  ( x H Z )  /\  ( x H Z )  =  Z )  ->  x  =  Z )
3332ex 434 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  ( x H Z )  ->  (
( x H Z )  =  Z  ->  x  =  Z )
)
3431, 33syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( x  =  ( x H U )  /\  ( x H U )  =  ( x H Z ) )  ->  ( ( x H Z )  =  Z  ->  x  =  Z ) )
3534ex 434 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( x H U )  ->  (
( x H U )  =  ( x H Z )  -> 
( ( x H Z )  =  Z  ->  x  =  Z ) ) )
3635eqcoms 2455 . . . . . . . . . . . . . . 15  |-  ( ( x H U )  =  x  ->  (
( x H U )  =  ( x H Z )  -> 
( ( x H Z )  =  Z  ->  x  =  Z ) ) )
3736imp31 432 . . . . . . . . . . . . . 14  |-  ( ( ( ( x H U )  =  x  /\  ( x H U )  =  ( x H Z ) )  /\  ( x H Z )  =  Z )  ->  x  =  Z )
3837ralimi 2836 . . . . . . . . . . . . 13  |-  ( A. x  e.  X  (
( ( x H U )  =  x  /\  ( x H U )  =  ( x H Z ) )  /\  ( x H Z )  =  Z )  ->  A. x  e.  X  x  =  Z )
39 eqsn 4176 . . . . . . . . . . . . . . 15  |-  ( X  =/=  (/)  ->  ( X  =  { Z }  <->  A. x  e.  X  x  =  Z ) )
40 ensn1g 7582 . . . . . . . . . . . . . . . . 17  |-  ( Z  e.  X  ->  { Z }  ~~  1o )
414, 40syl 16 . . . . . . . . . . . . . . . 16  |-  ( R  e.  RingOps  ->  { Z }  ~~  1o )
42 breq1 4440 . . . . . . . . . . . . . . . 16  |-  ( X  =  { Z }  ->  ( X  ~~  1o  <->  { Z }  ~~  1o ) )
4341, 42syl5ibr 221 . . . . . . . . . . . . . . 15  |-  ( X  =  { Z }  ->  ( R  e.  RingOps  ->  X  ~~  1o ) )
4439, 43syl6bir 229 . . . . . . . . . . . . . 14  |-  ( X  =/=  (/)  ->  ( A. x  e.  X  x  =  Z  ->  ( R  e.  RingOps  ->  X  ~~  1o ) ) )
4544com3l 81 . . . . . . . . . . . . 13  |-  ( A. x  e.  X  x  =  Z  ->  ( R  e.  RingOps  ->  ( X  =/=  (/)  ->  X  ~~  1o ) ) )
4638, 45syl 16 . . . . . . . . . . . 12  |-  ( A. x  e.  X  (
( ( x H U )  =  x  /\  ( x H U )  =  ( x H Z ) )  /\  ( x H Z )  =  Z )  ->  ( R  e.  RingOps  ->  ( X  =/=  (/)  ->  X  ~~  1o ) ) )
4730, 46sylbir 213 . . . . . . . . . . 11  |-  ( ( A. x  e.  X  ( ( x H U )  =  x  /\  ( x H U )  =  ( x H Z ) )  /\  A. x  e.  X  ( x H Z )  =  Z )  ->  ( R  e.  RingOps  ->  ( X  =/=  (/)  ->  X  ~~  1o ) ) )
4847ex 434 . . . . . . . . . 10  |-  ( A. x  e.  X  (
( x H U )  =  x  /\  ( x H U )  =  ( x H Z ) )  ->  ( A. x  e.  X  ( x H Z )  =  Z  ->  ( R  e.  RingOps 
->  ( X  =/=  (/)  ->  X  ~~  1o ) ) ) )
4929, 48sylbir 213 . . . . . . . . 9  |-  ( ( A. x  e.  X  ( x H U )  =  x  /\  A. x  e.  X  ( x H U )  =  ( x H Z ) )  -> 
( A. x  e.  X  ( x H Z )  =  Z  ->  ( R  e.  RingOps 
->  ( X  =/=  (/)  ->  X  ~~  1o ) ) ) )
5049ex 434 . . . . . . . 8  |-  ( A. x  e.  X  (
x H U )  =  x  ->  ( A. x  e.  X  ( x H U )  =  ( x H Z )  -> 
( A. x  e.  X  ( x H Z )  =  Z  ->  ( R  e.  RingOps 
->  ( X  =/=  (/)  ->  X  ~~  1o ) ) ) ) )
5150com24 87 . . . . . . 7  |-  ( A. x  e.  X  (
x H U )  =  x  ->  ( R  e.  RingOps  ->  ( A. x  e.  X  ( x H Z )  =  Z  -> 
( A. x  e.  X  ( x H U )  =  ( x H Z )  ->  ( X  =/=  (/)  ->  X  ~~  1o ) ) ) ) )
5228, 51mpcom 36 . . . . . 6  |-  ( R  e.  RingOps  ->  ( A. x  e.  X  ( x H Z )  =  Z  ->  ( A. x  e.  X  ( x H U )  =  ( x H Z )  ->  ( X  =/=  (/)  ->  X  ~~  1o ) ) ) )
5325, 52mpd 15 . . . . 5  |-  ( R  e.  RingOps  ->  ( A. x  e.  X  ( x H U )  =  ( x H Z )  ->  ( X  =/=  (/)  ->  X  ~~  1o ) ) )
5423, 53syl5com 30 . . . 4  |-  ( U  =  Z  ->  ( R  e.  RingOps  ->  ( X  =/=  (/)  ->  X  ~~  1o ) ) )
5554com13 80 . . 3  |-  ( X  =/=  (/)  ->  ( R  e.  RingOps  ->  ( U  =  Z  ->  X  ~~  1o ) ) )
5621, 55mpcom 36 . 2  |-  ( R  e.  RingOps  ->  ( U  =  Z  ->  X  ~~  1o ) )
5720, 56impbid 191 1  |-  ( R  e.  RingOps  ->  ( X  ~~  1o 
<->  U  =  Z ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1383    e. wcel 1804    =/= wne 2638   A.wral 2793   (/)c0 3770   {csn 4014   class class class wbr 4437   ran crn 4990   ` cfv 5578  (class class class)co 6281   1stc1st 6783   2ndc2nd 6784   1oc1o 7125    ~~ cen 7515  GIdcgi 25061   RingOpscrngo 25249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-om 6686  df-1st 6785  df-2nd 6786  df-1o 7132  df-er 7313  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-grpo 25065  df-gid 25066  df-ablo 25156  df-ass 25187  df-exid 25189  df-mgmOLD 25193  df-sgrOLD 25205  df-mndo 25212  df-rngo 25250
This theorem is referenced by:  dvrunz  25307  isdmn3  30446
  Copyright terms: Public domain W3C validator