Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngosub Structured version   Unicode version

Theorem rngosub 29941
Description: Subtraction in a ring, in terms of addition and negation. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
ringnegcl.1  |-  G  =  ( 1st `  R
)
ringnegcl.2  |-  X  =  ran  G
ringnegcl.3  |-  N  =  ( inv `  G
)
ringsub.4  |-  D  =  (  /g  `  G
)
Assertion
Ref Expression
rngosub  |-  ( ( R  e.  RingOps  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  =  ( A G ( N `  B ) ) )

Proof of Theorem rngosub
StepHypRef Expression
1 ringnegcl.1 . . 3  |-  G  =  ( 1st `  R
)
21rngogrpo 25054 . 2  |-  ( R  e.  RingOps  ->  G  e.  GrpOp )
3 ringnegcl.2 . . 3  |-  X  =  ran  G
4 ringnegcl.3 . . 3  |-  N  =  ( inv `  G
)
5 ringsub.4 . . 3  |-  D  =  (  /g  `  G
)
63, 4, 5grpodivval 24907 . 2  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  =  ( A G ( N `  B ) ) )
72, 6syl3an1 1256 1  |-  ( ( R  e.  RingOps  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  =  ( A G ( N `  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 968    = wceq 1374    e. wcel 1762   ran crn 4993   ` cfv 5579  (class class class)co 6275   1stc1st 6772   GrpOpcgr 24850   invcgn 24852    /g cgs 24853   RingOpscrngo 25039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-1st 6774  df-2nd 6775  df-gdiv 24858  df-ablo 24946  df-rngo 25040
This theorem is referenced by:  rngosubdi  29946  rngosubdir  29947  idlsubcl  30010
  Copyright terms: Public domain W3C validator